博舍

2023年中国人工智能产业发展趋势 在2016年我国人工智能企业超过了多少家

2023年中国人工智能产业发展趋势

来源:专知、图灵人工智能

人工智能作为新一轮产业变革的核心驱动力,正在释放历次科技革命和产业变革的巨大能量。持续探索新一代人工智能应用场景,将重构生产、分配、交换、消费等经济活动各环节,催生新技术、新产品、新产业。作为数字经济转型升级的推动力和新一轮科技竞赛的制高点之一,近年来人工智能被提升到国家战略高度。

2017至2019年,连续三年的政府工作报告中均提及加快人工智能产业发展;2020年,人工智能更是与SG基站、大数据中心、工业互联网等一起被列入新基建范围。在“新基建“背景下,人工智能将为智能经济的发展和产业数字化转型提供底层支撑,推动人工智能与SG、云计算、大数据、物联网等领域深度融合。

一、对2021年形势的基本判断

(一)新兴技术持续孕育,以人工智能为核心的集成化技术创新将加速

2020年以来,我国人工智能单点技术应用更加成熟,但人工智能与相关技术的协同规模化和产业化应用尚在早期,对经济高质量发展的赋能效率有待提升。我们判断,未来人工智能单项技术独立发挥作用将面临天花板。预计2021年,虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算以及区块链、边缘计算等新一代信息技术互为支撑。通过智能技术产业化和传统产业智能化,人工智能将为智能经济的发展和产业数字化转型提供底层支撑,推动人工智能与5G与云计算、大数据、物联网等领域深度融合,形成新一代信息基础设施的核心能力。

具体方向上,以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。预计2021年,人工智能将与汽车电子等领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统,进一步革新传统汽车产业链,使汽车加速智能化、网联化;人工智能有望与虚拟现实技术的相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境。

(二)智能经济初现雏形,泛在智能发展迅猛

新冠疫情成为未来一段时期全球发展的“新常态”,国内外均处于经济社会创新发展和转型升级期,对人工智能的运用需求迫切,我们判断,随着算法的创新、算力的增强、数据资源的累积,智能化基础设施的建设和传统基础设施将实现智能化升级,人工智能技术有望推动经济发展全要素的智能化革新。

展望2021年,人工智能进一步推动数字经济进入到智能经济的新阶段,智能经济这一新型经济形态已初现雏形,人工智能将与实体经济加速融合,成为新常态下产业转型升级的重要赋能源头之一,不仅推进智能制造、智能物流、智能农业、智慧旅游以及智能医疗、智慧城市等模式和业态的创新,还带动智能运营、智能软件、智能硬件、智能机器人等新产品发展,泛在化的智能经济发展将初见雏形。

人工智能将赋予信息物理系统(cPS>新的内涵,使之成为更具普遍性的人机协同系统。未来,万物互联必然带来网络的泛在、数据的泛在和应用需求的泛在,人工智能的应用场景将从拓展到更多行业和更多领域、更多环节、更多层面,任何人、任何单位在任何时间、任何地点都能使用的泛在智能将加速实现,这也将进一步推动人工智能技术与实体经济各领域的深度融合。

具体方向上最具潜力的领域,预计2021年制造业将是人工智能应用场景最为丰富、其应用需求贯穿制造业全生命周期,将成为未来人工智能融合应用的关键领域,人工智能与制造业的深度融合将在制造业更多环节、更多层面得到推广和深化,需求导向、痛点聚焦将成为人工智能与制造业融合的关键之一,人工智能产品和服务将落在具体的工业智能产品或具体行业领域的系统解决方案上,此外,由于大多数产业链企业还未从人工智能应用中大规模获取价值,因此安全性与投入产出比将成为制造企业应用人工能的重要决策依据,其附加值提升关键点将逐瓶由设备价值挖掘转向用户价值挖掘。

(三)场景赋能成为主旋律,典型场景将成为融资重点

随着我国人工智能技术的逐渐成熟,应用模式与商业模式的成形,人工智能市场和产业发展将持续向好,截至2020年G月底,我国人工智能核心产业规模达770亿元,人工智能企业超过2600家,已成为全球独角兽企业主要集中地之一,“场景决定应用、应用决定市场、市场决定企业发展前景”的人工智能投融资逻辑进一步获得各界认可。预计2021年,人工智能领域细分化和专业化程度将进一步提升,人工智能应用广泛的商业化落地阶段来临,政府和市场对于与具体应用场景特别是与实体经济应用需求紧密结合的应用将更加关注。

具体而言,预计2021年地方政府对人工智能产业发展的热度将持续,地方扶持政策、举措等也将变得更加务实和具备可操作性,应用将成为政府关注和紧抓的重要内容,国内更多城市(群)将聚焦智能芯片、智能无人机、智能网联汽车、智能机器人等优势产业,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,预计未来一年新零售、无人驾驶、医疗和教育等易落地的人工智能应用场景将更加受到资本关注。同时,由于中国在人工智能底层技术方面仍落后于美国,随着人工智能在中国的进一步发展,底层技术的投资的热度将持续增长,那些拥有顶级科学家团队、雄厚科技基因的底层技术创业公司将获得资本市场的持续资金注入,资本市场的转变将推动人工智能更加强调理性,各大企业将扎根场景深挖落地应用,使得人工智能产品真正“有用”。

(四)“新基建”赋能各行各业,人工智能产业底层支撑持续提升

中央经济工作会议于2018年首次提出“新基建”这一概念,指出要发挥投资关键作用,加大制造业技术改造和设备更新,加快5G商用步伐,加强人工智能、工业互联网、物联网等新型基础设施建设,此后已有7次中央级会议或文件明确表示加强“新基建”。2020年3月4日,中共中央政治局常务委员会召开会议,提出加快5G网络、数据中心等新型基础设施建设进度,引发更大关注。“新基建”具有新时代的丰富内涵,既符合未来经济社会发展趋势,又适应中国当前社会经济发展阶段和转型需求,在补短板的同时将成为社会经济发展的新引擎,人工智能“新基建”对人工智能产业发展具有重大意义。预计2021年,围绕算法、数据和计算力等人工智能新基建的“三驾马车”,人工智能产业链建设力度将继续增大。

具体而言,在算力方面联网的设备将增加至500亿台2021年我国5G通信网络部署加速,接入物数据的增长速度越来越快,人工智能训练所需的计算量将进一步呈现指数增长,相关行业对算力的需求将更为庞大,领先互联网公司大数据量将达到上千PB,传统行业龙头型企业数据量将达到PB级,个人产生数据达到TB级,GPU,ASIC,FPGA等计算单元将成为支撑我国人工智能技术发展的底层硬件能力,围绕三驾马车开展的产业链建设力度将持续加强。在算法方面,Cafe框架、CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN,LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。

二、需要关注的几个问题

(一)人工智能规模化基础算力支撑能力有限

多样化的人工智能产业应用数据和更复杂的深度学习算法,需要强大计算能力作为实现支撑,预计2021年数据量仍将保持爆炸性增长,人工智能算法模型将更趋复杂,需要更高水平的计算能力,但能提供规模化人工智能算力支持的国内企业还很有限,我国整体在人工智能算力基础设施方面准备不足。据专业机构预计,人工智能、5G通信等新一代信息技术的普及,将使得全球新创建的数据量将从2018年的33ZB快速增长到2025年的175ZB,这要求计算机的运算能力不断升级;2010年以来,随着GPU芯片的普及,FPGA和ASIC芯片加速发展并被应用于人工智能领域,2020年超级计算机的计算能力将达到每秒百亿亿次的水平。

然而,伴随人工智能发展对算力需求的不断迭代升级,国内人工智能芯片企业大量仍然大量依赖高通、英伟达、AMD、赛灵思、美满电子、EMC以及安华高、联发科等国际巨头提供符合要求的芯片产品,国内企业产业链龙头企业的发展与巨头相比尚在探索期;在商用服务器领域,IBM,HPE、戴尔等国际巨头稳居全球服务器市场前三位,浪潮、联想、新华三、华为等国内企业市场份额有限。

(二)开源开放的人工智能算法平台及框架缺失

本轮人工智能产业发展以深度学习技术为主要引擎,开源开放的深度学习底层环境为技术的进化和创新提供了基础性保障,我国亚需通过开源开放的方式扩大技术影响力、推动技术创新、聚焦产业生态发展,并为人工智能技术的产品溯源和系统可信评估提供新的解决途径。但我国开源生态建设起步相对较晚,对人工智能开源核心平台和框架参与不足,全球主流人工智能算法框架与平台的主导者是谷歌、脸书、亚马逊、微软等美国企业,百度、第四范式以及旷视科技、商汤科技、依图科技等国内企业的算法框架和平台尚未得到业界的广泛认可和应用,我国在深度学习框架核心技术领域支撑不足,主要体现在:核心技术和相关技术创新能力有限,对神经网络模型的训练性能和跨平台支持能力不足;对深度学习框架的超前设计和开发能力不足,对模块化开发、跨平台支持的研究滞后,不利于我国形成完整的人工智能产业生态,且对我国信息基础设施安全、产业安全、数据安全存潜在负面影响。芯片已经让不少中国企业和开发者有了覆舟之戒,深度学习框架却刚刚引起关注,缺少核心技术将会直接影响到未来人工智能产业相关联的芯片、系统以及软硬件平台等产业发展。

(三)产业数据标准化和互联互通水平严重不足

数据是人工智能迭代创新的核心要素,大数据、云、物联网、5G通信等新一代信息技术的发展产生了前所未有的海量数据,且数据的增长速度越来越快。我国人工智能技术虽然已在制造、交通、电子商务、金融、医疗等领域实现试点应用,但行业内上下游企业对产业数据的应用呈现各自为阵、重复用功、规模零星、标准不一、场景各异的特点,单一行业或企业的成功经验很难迁移,在事实上迟滞了广大中小企业利用人工智能技术提高生产力、实现高质量发展的步伐。不同行业之间数据来源更为繁杂,数据质量参差不齐,标注水平不一,缺少数据标准和整合共享渠道,导致各行业之间、单一行业内部的数据均尚未实现有效互联互通和有机整合,极大降低了数据的可用性和可迁移性。

(四)尚未形成嵌入行业场景的定制化人工智能基础设施建设评估框架

典型应用场景作为技术重要“试验场”和“加速器”,其评估、选择和打造将决定各行各业能否有效利用人工智能基础设施提升智能化水平、实现智能化转型。目前,我国尚未有效发掘丰富数据和多样化场景的发展潜力,对嵌入行业场景的人工智能“新基建”需求提炼和特点把握不到位;虽然拥有庞大的数据规模以及更丰富的应用场景,尤其在金融、医疗、教育、制造、零售以及智慧城市、政府服务等领域有巨大的基础数据积累和新一代基础设施需求,但是普遍缺乏对人工智能算力需求的充分评估,缺少结合自身行业对深度学习算法的把握理解和应用能力,对行业数据缺少汇集、统筹、整理及清洗的意识。事实上,2020年在防控新冠肺炎疫情的过程中,人工智能作为“新基建”的效能已经充分显现,在好解各个行业出现人流、物流、信息流、资金流瓶颈方面发挥了重要作用,对重大公共安全风险防范和治理、推动制造业企业复工复产、维持高校和中小学授课教育起到不可或缺的作用,及时总结2020年成功经验、梳理嵌入行业场景的定制化人工智能基础设施建设评估框架在2021年已势在必行。

(五)细分应用领域的专业人才缺口较大

我国推进人工智能进一步发展仍面临深度学习人才荒的挑战。根据美国保森基金会旗下智库的统计显示,中国是美国顶级AI研究人员的最大来源,截至2019年底,全球顶尖AI人才中的近GO%定居美国,其中在中国接受本科教育的顶尖AI人才占比最高,达到29%(其后为美国本土的20%、欧洲的18%和印度的8%),中国是美国顶尖人工智能人才的第一大来源地,在美国人工智能创新发展过程中起到关键作用;另据领英大数据显示,全球AI人才整体供给在340万人左右,其中深度学习人才仅9.5万人,且流动性较大,进一步加大了缺口,这其中中国的AI人才总数仅为5万人。2020年,国内人工智能人才缺口达500多万,供需比例严重失衡;少儿编程教育在美国的渗透率达到44.8%,在中国仅为0.9G%;中国的顶级人工智能人才仅排第六名,前五位分别是美国、英国、德国、法国、意大利。2021年,不断加强我国人工智能人才培养、补齐人才引育短板,已是当务之急。

三、应采取的对策建议

(一)推动建立专用AI计算设施夯实算力基础

推动建立AI超算中心,承担大规模AI算法计算、机器学习、图像处理、科学计算和工程计算任务,加速垂直行业人工智能技术的产业化落地,促进当地人工智能产业发展。推进弹性计算、海量数据存储等技术应用,提高算力资源利用效率。加快推进AI算力基础设施绿色高效发展,建设绿色高效算力中心。加强算力中心前期规划与设计,立足应用需求,兼顾能源、气候、自然冷源、网络设施、能耗指标等要素和条件,合理布局建设算力基础设施。

(二)构建智能生态圈打造软硬件协同能力

推动实现软件与定制AI芯片的高度祸合,以达到性能最优。构建行业协同能力,推动人工智能企业与垂直行业平台及通用平台做好高效对接,保证调用所需平台功能的实时性。推动AI专用计算设施与行业已有业务系统实现有效对接,以算力支撑为依托,打造智能化应用生态环境。支持行业企业提供智能算力基础设施及通用软件服务,汇聚孵化人工智能企业,促进人工智能产业发展,打造“科技研发、产业孵化、创投资本、教育培训、配套政策环境”的智能生态圈系统。

(三)持续支持人工智能开源开放和公共服务平台建设

打造人工智能技术创新载体,支持龙头企业牵头,联合产业上下游企业、高校院所、专业机构等,共同建设人工智能重点领域的技术创新平台,支持高校、企业申报国家实验室、国家重点实验室、国家技术创新中心、重点工程实验室等国家级科研平台。认定若干区级人工智能技术创新平台,并视创新成效给予支持。引导和支持建立一批人工智能开放平台、开源项目及大规模常识性数据库,建立人工智能技术公共服务平台、多场景训练与测试验证重点实验室等一批平台型人工智能应用测试实体,支持面向云端训练和终端执行的开发框架、算法库、工具集等,并为高校院所、创新型企业开放底层技术接口和数据库调用接口,从源头上推进人工智能原始创新、自主创新。

(四)建设支持有力的人工智能政策工具箱

健全人工智能数据标准、测评、知识产权等服务体系,着力打造标准化格式的数据集,建立人工智能系统训练、验证和测试的元数据集,围绕产业术语、参考框架、算法模型、基础理论、关键技术以及产品及服务、行业应用、安全和伦理等,为细分领域人工智能技术应用提供应用标准以及部署指南、实践案例。推出量化的人工智能技术衡量指标,建立针对人工智能技术性能的标准化评测方法体系,形成人工智能知识产权和伦理道德风险问责制度和审核工具。积极吸引海外科研人员、聚集全球人才,在研究经费资助、个人税收、签证、户口、子女教育等一系列领域推出引进海外高端人才的一揽子政策,切实解决科研人员后顾之忧,并为其科研、创业提供更大力度的支持。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

我国人工智能国际科技竞争力及未来发展路径分析

0分享至来源:中国科协创新战略研究院《创新研究报告》

第16期(总第553期)2023-4-4

我国人工智能已取得了举世瞩目成就,已经处于世界第一梯队。算法、应用、硬件、数字基础设施、数据、算力,是人工智能领域的“六架马车”,世界范围内,我国在数字基础设施、人工智能应用、数据生产、算力建设等方面优势明显,但同时,相比美国,我国存在诸如核心算法及专利较少、硬件研发能力薄弱、顶尖人才流失较为严重等问题。我国应基于国情,规划人工智能未来发展路线,走出一条特色发展之路。

当前,人工智能(AI)已成为大国竞争的主战场,我国已于2017年发布《新一代人工智能发展规划》,为我国未来人工智能的发展指明了方向、提出了要求。《新一代人工智能发展规划》提出我国到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心的战略目标。当前我国在人工智能领域虽然已取得显著成就,进入世界人工智能领域第一梯队,但是和美国相比,我国硬件、研发等领域依然存在很大差距。

关于我国人工智能国际竞争力的一些基本判断

一是得益于国家大力支持,我国人工智能得以在短时间内迅速崛起

虽然我国人工智能技术贮备不多,发展历史较短,但是我国迅速抓住了人工智能发展机遇,在制度保障、资源投入、人才培养等方面给予充分支持,使我国在较短时间内成功进入世界人工智能第一阵营。如:

政策指引方面,2017年国务院便颁布了《国家新一代人工智能发展规划》,为我国人工智能发展提供制度保障;

投入层面,2020年,虽然我国人工智能领域的私人投资远少于美国的236亿美元,但依然达到99亿美元,而同期欧盟仅为20亿美元,且中国拥有强大的公共投资机制;

人才培养方面,截止2021年7月,我国已有35所高校建立了人工智能研究院。

当前,我国人工智能论文、专利等均已经超过或赶超美国,在人脸识别、语音视别、自然语言翻译、无人机等技术应用领域已经开始引领世界。

二是我国已进入世界人工智能第一阵营,成为仅次于美国的人工智能大国

2020年,我国在人工智能领域的论文发表总量、引用总量均已超过美国,成功登顶世界。2004年,我国人工智能论文量曾首次超过美国,此后于2017年再次超越美国居世界首位,并延续至今。根据斯坦福大学发布的报告《人工智能索引报告2021》(ArtificialIntelligenceIndexReport2021),2019年,中国在世界人工智能出版物中所占的份额为22.4%,超过同期欧盟的16.4%及美国的14.6%。不仅在数量上,2020年我国人工智能论文引用量也第一次超越美国(在过去十年中,美国的人工智能会议论文被引用次数一直显著多于中国),占世界人工智能论文总引用量的20.7%,而美国这一比例为19.8%[1](见图1)。

从国际人工智能专利层面看,根据英国产权办公室2019年发布的报告《人工智能:英国及全球人工智能专利概览》,1998-2017年间,美国和中国是世界范围内最大的人工智能专利申请国,其中,美国的总人工智能专利申请量接近50000项,而中国则超过了40000项,远超日本(约15000项)、韩国(约7000项)、德国(约5000项)、英国(约2000项)、俄罗斯(约1500项)、法国(约1000项)等(见图2)。

约从2015年起,人工智能专利的增加主要是由中国和美国所推动,虽然美国是人工智能专利申请总量最多的国家,但中国最近的增长幅度更大,自2014年以来每年的数字已超过美国[2]。

三是我国人工智能技术领域存在大而不强、人才流失等现象

虽然我国在人工智能论文数量、引用量、专利总量等方面已经居于世界前列,但大而不强、影响力弱等现象非常突出。如在更高质量的人工智能顶会论文引用量层面看,美国在过去21年中一直处于领先地位,2020年,美国以40.1%的总引用率位居榜首,其次是中国(11.8%)和欧盟(10.9%)[3]。2013-2017年间,世界人工智能论文生产量最多的科研组织均来自于美国(卡内基梅隆大学、MIT、微软、IBM、斯坦福大学),且其论文影响力平均值达4.0,而中国仅为1.5[4]。而在专利影响力方面,我国与美国也存在很大差距,根据英国产权办公室发布的报告《人工智能:英国及全球人工智能专利概览》,中国的大部分专利申请都是在中国国内单独公布,只有19%的专利在其他国家有同等申请,而美国这一比例则达到53%,英国更高达到88%。此外,我国顶尖人工智能人才被美国“虹吸”现象严重,在人工智能人才吸引力方面,我国依然存在非常大的差距。

我国在世界人工智能领域的竞争优势

相比美国、欧盟,中国在人工智能应用及支撑性基础设施方面处于世界领先地位,中国人工智能技术的应用领域广泛、应用场景多样,数字基础设施完善程度远超其它国家;同时,我国也是世界人工智能应用与数据生产、流通第一大国,各类型数据的生产、应用、流通更是远超世界其它国家,从而形成了我国在世界人工智能领域较为突出的比较竞争优势。

一是已建成世界最为完善的数字基础设施体系

人工智能技术的发展,需要完善的数字基础设施建设的支持,从而为数字化生活、数字化经济提供基本支撑,而我国近年通过政策支持,已经形成了较为完善的数字基础设施,为我国人工智能技术的应用与发展奠定了基础。根据中国信通院发布的《全球数字经济白皮书(2022年)》报告,2021年底,我国数字经济规模达7.1万亿美元,位居世界第二。根据国务院发布的《“十四五”数字经济发展规划》,我国已建成全球规模最大的光纤和第四代移动通信(4G)网络、第五代移动通信(5G)网络系统;中国网民规模达9.89亿,互联网普及率70.4%,移动宽带用户普及率达到108%,互联网协议第六版(IPv6)活跃用户数达到4.6亿[5]。

二是已形成全球范围内最为庞大的数字技术应用体系

我国人口众多、企业重视人工智能技术应用,从而形成了发达的数字市场经济,当前我国已成为全球最大网络零售市场和最大移动支付交易市场,人工智能应用范围及使用强度世界领先。2018年中国约有32%的企业使用了人工智能相关技术,超过美国的22%和欧盟的18%,我国的语音识别、图像识别、大数据处理等人工智能技术已在商业、交通、金融、医疗、教育等领域广泛普及[6]。2019年,我国数字经济增加值占比近40%,成为全球最大网络零售市场和最大移动支付交易市场。根据中国信息通信研究院2021年发布的《全球数字经济白皮书》,2020年,我国电子商务交易规模达37.21万亿元,全国网上零售额为11.76万亿元。同时,在线教育、在线医疗、远程办公等数字服务业蓬勃发展,截止2020年底,用户规模分别达3.42亿、2.15亿和3.46亿。

三是我国是世界最大的数据生产与流通国

我国数据生产量远超美欧,是世界第一数据生产大国。2018年我国使用移动支付的个人数量达5300万人,远超美国的550万人及欧盟的45万人。从物联网数据看,2018年,中国的物联网数据量为1520万TB,是美国690万TB、欧盟535万TB的近三倍;中国在电子健康记录、遗传数据等方面均居世界首位,我国数据规模预计2025年将增至48.6ZB,成为数据量最大、类型最丰富的国家之一[7]。

四是算力建设稳步推进,并逐渐超过美国成为世界算力最强国

算力对人工智能至关重要,是其运行的基础“能源”来源,事关其整体运行能力,算力作为数字经济时代的关键生产力要素,如计算力指数平均每提高1点,数字经济和GDP将分别增长3.5‰和1.8‰。2022年3月17日,IDC、浪潮信息、清华大学全球产业研究院联合发布《2021-2022全球计算力指数评估报告》显示,过去5年,中国人工智能算力首次超越美国成为全球第一,人工智能服务器支出规模同比增长44.5%,在15个国家人工智能算力支出的增长中,中国贡献了近60%。过去五年,我国总算力水平增幅程度也远超其他国家,达13.5%,而巴西和马来西亚算力增速均为8.4%,俄罗斯算力增速为8.2%,美国为5%[8]。

我国在世界人工智能领域的相对劣势

一是顶级研究人员缺乏,保有量远落后于美国

根据麦克罗波洛智库(MacroPolo)发布的报告《全球人工智能人才追踪》(TheGlobalAITalentTracker),2019年,全球近59%的顶级人工智能研究人员(top-tierAIresearchers)为美国大学和公司工作,而中国仅为11%。麦肯锡咨询公司高级数据分析师伊桑·巴纳吉(IshanBanerjee)也指出,美国科研机构雇佣了世界近60%的顶级人工智能研究人员,是中国(10.6%)和欧洲(10.2%)的近六倍(见图3)[9]。

《全球人工智能人才追踪》报告分析了2019年在国际人工智能顶会“神经信息处理系统进展大会”(NeurIPS)上做口头陈述的论文作者情况(口头陈述是NeurIPS最负盛名的论文类别,2019年的接受率为0.5%),结果发现,来自美国的口头陈述学者占大会口头陈述学者总数的65%,加拿大学者占10%居第二位,此后分别为法国8%居第三位、英国6%居第四位、以色列5%居第五位、荷兰3%居第六位,而中国学者仅仅是包含在剩余的4%之内。

二是面临严峻的来自美国的“人才虹吸”压力

美国的领先地位建立在吸引国际人才的基础之上,如约超过三分之二在美国工作的顶级人工智能研究人员,是在其他国家获得本科学位。根据斯坦福大学2021年发布的《2021人工智能指数报告》,2019年北美人工智能新入学博士中,国际学生占比达64.3%,且这些国际学生博士毕业后,81.8%留在美国[10]。2020年,《华尔街日报》北京分社记者保罗·莫祖尔(PaulMozur)撰文称,在美国学习人工智能的中国公民往往会留在美国工作,他将中国人才称为“美国人工智能领域的秘密武器。”[11]根据《全球人工智能人才追踪》报告,从世界顶级人工智能研究人员的来源地看,约29%来自于中国,而美国仅为20%。但是,中国却经历了顶级人工智能研究人员的大量流失窘境,中国的顶级人工智能研究人员,只有34%选择留在中国工作,而大约56%却前往美国工作(见图4)。

特别是在美国攻读人工智能博士学位的中国留学生,他们在美国完成人工智能博士学位后,88%会选择留在美国工作,只有10%返回中国(见图5)。

三是核心专利严重缺位,人工智能产业生态面临安全隐患

中国在人工智能核心算法方面面临缺位问题,底层核心算法(如Dropout等)大部分掌握在美国等手中,制约着我国整个人工智能产业的安全与可持续发展。如在人工智能核心专利层面,1960年至2018年间,美国向美国专利商标局所提交的高被引专利族群达28031,而中国仅为691[12]。特别是谷歌已持续对基础人工智能算法专利进行广泛布局,并构建完善产业生态(据赛迪智库统计,2016年至2018年间谷歌共发布专利项为1659,且以发明专利为主)。这一状况严重影响了中国人工智能产业安全,如2019年谷歌提出作为当前深度学习最为基础性的算法Dropout的专利申请正式生效,引起行业震动。

四是过度依赖国外算法,缺乏有影响力的人工智能开源软件库

虽然在一些专用算法领域,我国已有所突破,如科大讯飞、百度、“天猫精灵”等均形成了一定的核心算法研究能力,但整体来讲,我国大部分人工智能企业(特别是中小型人工智能应用类企业)主要依赖国外开源算法及软件。一个典型例子是:2021年,在全球持续蛋白质结构预测竞赛CAMEO中,来自中国华深智药的HeliXonAI,其平均lDDT预测精确度达到了84.0(之前AlphaFold2模型预测精确度为81.9),然而,HeliXonAI的核心算法是基于开源的AlphaFold2。根据斯坦福大学2021年发布的《2021人工智能指数报告》,2020年世界最受欢迎的人工智能开源软件,主要是美国所研发的算法,如Google的TensorFlow处于绝对领先地位,其次还包括谷歌的另一款开源人工智能软件Keras,Facebook创建的PyTorch等(见图6)。

五是人工智能硬件领域大幅落后于世界,难以提供足够的发展支撑

我国在人工智能硬件领域(设计、材料、制造等)差距甚大,关键性半导体材料及生产工艺技术的缺乏,如大规模基础性的底层人工智能芯片(如GPU、FPGA、TPU)设计与制造基本处于空白或尚处于发展初期;专用型或定制性人工智能芯片已有进展(华为昇腾910、阿里含光800、地平线自动驾驶芯片征程3、云天励飞视觉分析芯片等),但性能及制造仍是短板。更为重要的是,高端智能芯片的生产与加工等与美、日、韩依然存在差距,如当前我国电动汽车智能芯片主要依赖于英伟达、高通等美国企业。此外,用于提高人工智能硬件的底层数据库(如NVIDIA优化GPU的cuDNN等)国内鲜有涉及。

政策建议

一是启动“人工智能基础层技术战略贮备计划”,确保人工智能产业生态整体安全

当前条件下,我国应采取“扬长补短”模式,重视补足短板,研究方向“下沉”——由追求单纯的应用领先转向底层核心技术攻克,维护我国人工智能产业生态的稳定性与安全性。我国应适时启动“人工智能基础层技术战略贮备计划”,由工信部等部门进行专项资助,如“核心算法专项计划”“先进智能半导体制造工艺计划”“人工智能基础架构创新与推广计划”等,并整合各个社会力量,组建攻克人工智能领域“卡脖子”问题的“国家队”。此外,还可以举办类似于美国国防部高级研究计划局(DARPA)“大挑战”那样的、面向大学或全社会的竞赛项目,如“核心算法创新大赛”等。

二是加快培养本土人工智能人才,推动顶尖人才回流,并积极构建国际人才培养新渠道

人工智能人才,特别是顶尖人工智能人才是中美人工智能竞争的最重要一环,为应对美国对中国人工智能顶尖人才的“虹吸效应”,一方面,我国应加快本土人工智能人才的培养,加快大学人工智能研究院、专业性人工智能研究机构建设步伐,或是大学、科研机构与企业共同培养人工智能人才,为本土人工智能人才培养提供充足平台;另一方面,应加快制定、推进专项的“国际人工智能人才引进计划”,设立“人才引进绿色通道”,积极与美国等争取、争夺与人工智能相关的顶尖人才,特别是鼓励本国人才回流;此外,积极拓展国际人工智能人才培养渠道,鼓励企业在与中国关系较为友好、且在数学等领域具有较好基础的国家(如俄罗斯等)设立人工智能研发机构,形成人工智能人才培养的国际化局面,积极吸纳国际智力资源为我所用。

三是积极构建中国特色的人工智能伦理治理体系,确保负责任人工智能技术的发展

统筹发展与安全,找好发展与安全的平衡点,既不能因为规制过度而阻碍技术创新应用,也不能因为规制不当而引发不可逆转的风险。在治理路径上,坚持从技术、法律和伦理三方面共同推动符合人工智能阶段性发展特征的规制体系,特别是要加强人工智能安全、隐私保护等方面的技术研发,强化伦理治理和风险防范的技术支撑,实现“以技制技”。

文章来源

中国科协创新战略研究院科研项目“世界主要国家人工智能技术优先领域的设置及启示研究”

参考文献

[1]StanfordUniversity.ArtificialIntelligenceIndexReport2021.2021.

[2]UKIntellectualPropertyOffice.ArtificialIntelligenceAworldwideoverviewofAIpatentsandpatentingbytheUKAIsector.2019

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/817610/Artificial_Intelligence_-_A_worldwide_overview_of_AI_patents.pdf

[3]StanfordUniversity.ArtificialIntelligenceIndexReport2021.2021.

[4]DANIELCASTRO,MICHAELMCLAUGHLIN,ELINECHIVOT.WhoIsWinningtheAIRace:China,theEUortheUnitedStates?2019:23

[5]中华人民共和国国务院.《国务院关于印发“十四五”数字经济发展规划的通知》.2022年1月12日.

[6]DANIELCASTRO,MICHAELMCLAUGHLIN,ELINECHIVOT.WhoIsWinningtheAIRace:China,theEUortheUnitedStates?2019:1-20

[7]熊鸿儒,田杰棠.突出重围:数据跨境流动规则的“中国方案”.学术前沿.2021(9).

[8]付佳.最新报告:中国AI算力过去5年首次超越美国,成为全球第一.2022-03-25

https://www.sohu.com/a/532575677_121118710

[9]PaulMozur,CadeMetz.AU.S.SecretWeaponinA.I.:ChineseTalent.June9,2020

https://www.nytimes.com/2020/06/09/technology/china-ai-research-education.html

[10]StanfordUniversity.ArtificialIntelligenceIndexReport2021.2021.

[11]PaulMozur,CadeMetz.AU.S.SecretWeaponinA.I.:ChineseTalent.June9,2020

https://www.nytimes.com/2020/06/09/technology/china-ai-research-education.html

[12]DANIELCASTRO,MICHAELMCLAUGHLIN,ELINECHIVOT.WhoIsWinningtheAIRace:China,theEUortheUnitedStates?2019:29.

作者:赵月刚1、王彦雨2

1中国自然辩证法研究会

2中国科学院自然科学史研究所

责任编辑:黄诗愉

产业|工业化|数字化|人才|创新创业|颠覆性技术|科技指标|科技政策|前沿技术|知识产权|智库|

获取方法如下:

其他系列将陆续呈现,多多关注哦!

投稿邮箱:nais-research@cnais.org.cn

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇