博舍

离合器的结构和工作原理(图解) 智能定位器 工作原理图解视频讲解大全集最新

离合器的结构和工作原理(图解)

下面以摩擦离合器的基本组成和工作原理图解为例,介绍给大家。

离合器的基本组成结构

摩擦离合器由主动部分、从动部分、压紧机构和操纵机构四部分组成,如图所示。

图摩擦离合器的基本组成示意图

1-曲轴2-从动轴(变速器一轴)3-从动盘4-飞轮5-压盘6-离合器盖7-分离杠杆8、10、15-回位弹簧9-分离轴承和分离套筒11-分离叉12-离合器踏板13-分离拉杆14-分离拉杆调节叉16-压紧弹簧17-从动盘摩擦片18-轴承

原创HTTPS://www.qcwxjs.com/

离合器主动部分包括飞轮、离合器盖和压盘。离合器盖用螺栓固定在飞轮上,压盘后端圆周上的凸台伸入离合器盖的窗口中,并可沿窗口轴向移动。这样,当发动机转动,动力便经飞轮、离合器盖传到压盘,并一起转动。

离合器从动部分包括从动盘和从动轴。从动盘带有双面的摩擦衬片,离合器正常接合时分别与飞轮和压盘相接触;从动盘通过花键毂装在从动轴的花键上,从动轴是手动变速器的输入轴(一轴),其前端通过轴承支承在曲轴后端的中心孔中,后端支承在变速器壳体上。

压紧机构由若干根沿圆周均匀布置的压紧弹簧,它们装在压盘与离合器盖之间,用来将压盘和从动盘压向飞轮,使飞轮、从动盘和压盘三者压紧在一起。

操纵机构包括离合器踏板、分离拉杆、调节叉、分离叉、分离套筒、分离轴承、分离杠杆、回位弹簧等组成。

操作:观看某离合器的实物或模型。

离合器的工作原理

1)接合状态

离合器在接合状态下,操纵机构各部件在回位弹簧的作用下回到图2-1所示的各自位置,分离杠杆内端与分离轴承之间保持有一定的间隙压紧弹簧将飞轮、从动盘和压盘三者压紧在一起,发动机的转矩经过飞轮及压盘通过从动盘两摩擦面的摩擦作用传给从动盘,在由从动轴输入变速器。

2)分离过程

分离离合器时,驾驶员踩下离合器踏板,分离套筒和分离轴承在分离叉的推动下,先消除分离轴承与分离杠杆内端之间的间隙,然后推动分离杠杆内端前移,使分离杠杆外端带动压盘克服压紧弹簧作用力后移,摩擦作用消失,离合器的主、从动部分分离,中断动力传动。

3)接合过程

接合离合器时,驾驶员缓慢抬起离合器踏板,在压紧弹簧的作用下,压盘向前移动并逐渐压紧从动盘,使接触面间的压力逐渐增加,摩擦力矩也逐渐增加;当飞轮、压盘和从动盘之间接合还不紧密时,所能传动的摩擦力矩较小,离合器的主、从动部分有转速差,离合器处于打滑状态;随着离合器踏板的逐渐抬起,飞轮、压盘和从动盘之间的压紧程度逐渐紧密,主、从动部分的转速也渐趋相等,直到离合器完全接合而停止打滑,接合过程结束。

离合器自由间隙和离合器踏板自由行程

离合器在正常接合状态下,分离杠杆内端与分离轴承之间应留有一个间隙,一般为几个毫米,这个间隙成为离合器自由间隙。如果没有自由间隙,从动盘摩擦片磨损变薄后压盘将不能向前移动压紧从动盘,这将导致离合器打滑,使离合器所能传动转矩下降,车辆行驶无力,而且会加速从动盘的磨损。

为了消除离合器的自由间隙和操纵机构零件的弹性变形所需要的离合器踏板行程称为离合器踏板自由行程。可以通过拧动调节叉来改变分离拉杆的长度对踏板自由行程进行调整。

摩擦离合器的构造和原理

1.摩擦离合器的结构类型

1)按从动盘的数目

可以分为单片离合器和双片离合器。汽车、客车和部分中、小型货车多采用单片离合器,因为发动机的最大转矩一般不是很大,单片从动盘就可以满足动力传动的要求;双片离合器由于增加了一片从动盘,使得在其他条件不便的情况下,将比单片离合器所能传动的转矩增大了一倍(由于一个从动盘是两个摩擦面传递动力,而二个从动盘则是四个摩擦面传递动力),多用于重型车辆上。

2)按压紧弹簧的形式

可以分为周布弹簧离合器、中央弹簧离合器和膜片弹簧离合器。周布弹簧离合器和中央弹簧离合器采用螺旋弹簧,分别沿压盘的圆周和中央布置;膜片弹簧离合器采用膜片弹簧,目前应用最广泛。

2.膜片弹簧离合器

膜片弹簧离合器目前在各种类型的汽车上都广泛应用,其构造如图2-2、图2-3和图2-4所示。

图膜片弹簧离合器的构造

1-从动盘2-离合器盖和压盘3-分离轴承4-卡环5―分离叉6-分离套筒7-飞轮

图膜片弹簧离合器盖和压盘分解图

1-离合器盖2-膜片弹簧3-压盘4-传动片5-从动盘6-支承环

图膜片弹簧离合器盖和压盘示意图

1-铆钉2-传动片3-支承环4-膜片弹簧5-支承铆钉6-压盘7-离合器盖

膜片弹簧离合器构造和原理

膜片弹簧离合器也是由主动部分、从动部分、压紧机构和操纵机构组成,操纵机构将在下一个课题进行介绍。

主动部分由飞轮、离合器盖和压盘组成。离合器盖通过螺栓固定在飞轮上,为了保持正确的安装位置,离合器盖通过定位销进行定位。压盘与离合器盖之间通过周向均布的三组或四组传动片来传递转矩。传动片用弹簧钢片制成,每组两片,一端用铆钉铆在离合器盖上,另一端用螺钉连接在压盘上。

从动部分包括从动盘和从动轴,从动盘一般都带有扭转减振器。发动机传到传动系的转速和转矩是周期性变化的,使传动系产生扭转振动,这将使传动系的零部件受到冲击性交变载荷,使寿命下降、零件损坏。采用扭转减振器可以有效的防止传动系的扭转振动。带扭转减振器的从动盘的结构和原理如图2-5所示。

图带扭转减振器的从动盘

1、2-摩擦衬片3-摩擦垫圈4-碟形垫圈5-装合后的从动盘总成6-减振器盘7-摩擦板8-从动盘毂9、13、15-铆钉10-减振弹簧11-波浪形弹簧钢片12-止动销14-从动盘钢片

a)不工作时b)工作时

从动盘钢片外圆周铆接有波浪形弹簧钢片,摩擦衬片分别铆接在弹簧钢片上,从动盘钢片与减振器盘铆接在一起,这两者之间夹有摩擦垫圈和从动盘毂。从动盘毂、从动盘钢片和减振器盘上都有六个圆周均布的窗孔,减振弹簧装在窗孔中。

当从动盘受到转矩时,转矩从摩擦衬片传到从动盘钢片,再经减振弹簧传给从动盘毂,此时弹簧将被压缩,吸收发动机传来的扭转振动。

压紧机构是膜片弹簧,其径向开有若干切槽,形成弹性杠杆。切槽末端有圆孔,固定铆钉穿过圆孔,并固定在离合器盖上。膜片弹簧两侧装有钢丝支承环,这两个钢丝支承环是膜片弹簧工作时的支点。膜片弹簧的外缘通过分离钩与压盘联系起来。

操作:实际观察膜片弹簧离合器,并尽量是分解的。

膜片弹簧离合器的工作原理

当离合器盖未安装到飞轮上时,膜片弹簧不受力而处于自由状态,此时离合器盖与飞轮之间有一距离S,如图2-6a所示。当离合器盖通过螺栓固定在飞轮上时,膜片弹簧在支承环处受压产生弹性变形,此时膜片弹簧的外圆周对压盘产生压紧力使离合器处于接合状态,如图2-6b所示。当踩下离合器踏板时,分离轴承推动膜片弹簧,使膜片弹簧以支承环为支点外圆周向后翘起,通过分离钩拉动压盘后移使离合器分离,如图2-6c所示。

图膜片弹簧离合器的工作原理

从上面的介绍中可以看出,膜片弹簧既是压紧弹簧,又是分离杠杆,使结构简化。另外膜片弹簧的弹簧特性优于圆柱螺旋弹簧,所以膜片弹簧离合器的应用越来越广泛,在各种车型上都有应用。

差速器的结构及工作原理(图解)

汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等;即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。www.qcwxjs.com差速器的作用车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。

若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。

在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各驱动桥所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。

布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

(汽车维修技术网原创https://www.QcwxJs.com/)

差速器可分为普通差速器和防滑差速器两大类。普通差速器的结构及工作原理

目前国产汽车及其它类汽车基本都采用了对称式锥齿轮普通差速器。

对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8的凸缘上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

行星齿轮的背面和差速器壳相应位置的内表面,均做成球面,这样作能增加行星齿轮轴孔长度,有利于和两个半轴齿轮正确地啮合。

差速器的工作原理

在传力过程中,行星齿轮和半轴齿轮这两个锥齿轮间作用着很大的轴向力,为减少齿轮和差速器壳之间的磨损,在半轴齿轮和行星齿轮背面分别装有平垫片3和球面垫片5。垫片通常用软钢、铜或者聚甲醛塑料制成。差速器的润滑是和主减速器一起进行的。为了使润滑油进入差速器内,往往在差速器壳体上开有窗口。为保证润滑油能顺利到达行星齿轮和行星齿轮轴轴颈之间,在行星齿轮轴轴颈上铣出一平面,并在行星齿轮的齿间钻出径向油孔。www.qcwxjs.com

在中级以下的汽车上,由于驱动车轮的转矩不大,差速器内多用两个行星齿轮。相应的行星齿轮轴相为一根直销轴,差速器壳可以制成开有大窗孔的整体式壳,通过大窗孔,可以进行拆装行星齿轮和半轴齿轮的操作。

差速器的工作原理图解

一般的差速器主要是由两个侧齿轮(通过半轴与车轮相连)、两个行星齿轮(行星架与环形齿轮连接)、一个环形齿轮(动力输入轴相连)。

传动轴传过来的动力通过主动齿轮传递到环齿轮上,环齿轮带动行星齿轮轴一起旋转,同时带动侧齿轮转动,从而推动驱动轮前进。

当车辆直线行驶时,左右两个轮受到的阻力一样,行星齿轮不自转,把动力传递到两个半轴上,这时左右车轮转速一样(相当于刚性连接)。www.qcwxjs.com

当车辆转弯时,左右车轮受到的阻力不一样,行星齿轮绕着半轴转动并同时自转,从而吸收阻力差,使车轮能够与不同的速度旋转,保证汽车顺利过弯。

普通齿轮式差速器的两个特性对称式锥齿轮差速器中的运动特性关系式如图D-C5-7gif-20所示为普通对称式锥齿轮差速器简图。差速器壳3作为差速器中的主动件,与主减速器的从动齿轮6和行星齿轮轴5连成一体。半轴齿轮1和2为差速器中的从动件。行星齿轮即可随行星齿轮轴一起绕差速器旋转轴线公转,又可以绕行星齿轮轴轴线自转。设在一段时间内,差速器壳转了N0圈,半轴齿轮1和2分别转了N1圈和N2(N0、N1和N2不一定是整数)圈,则当行星齿轮只绕差速器旋转轴线公转而不自转时,行星齿轮拨动半轴齿轮1和2同步转动,则有:N1=N2=N0当行星齿轮在公转的同时,又绕行星齿轮轴轴线自转时,由于行星齿轮自转所引起一侧半轴齿轮1比差速器壳多转的圈数(N4)必然等于另一侧半轴齿轮2比差速器壳少转的圈数。于是有:N1=N0+N4和N2=N0-N4以上两种情况,N1、N2与N0之间都有以下关系式:N1+N2=2N0若用角速度表示,应有:ω1+ω2=2ω0其中ω1、ω2和ω0分别为左、右半轴和差速器壳的转动角速度。上式表明,左右两侧半轴齿轮的转速之和等于差速器壳转速的两倍,这就是两半轴齿轮直径相等的对称式锥齿轮差速器的运动特性关系式。B对称式锥齿轮差速器中的转矩分配关系式在以上差速器中,设输入差速器壳的转矩为M0,输出给左、右两半轴齿轮的转矩为M1和M2。当与差速器壳连在一起的行星齿轮轴带动行星齿轮转动时,行星齿轮相当于一根横向杆,其中点被行星齿轮轴推动,左右两端带动半轴齿轮转动,作用在行星齿轮上的推动力必然平均分配到两个半轴齿轮之上。又因为两个半轴齿轮半径也是相等的。所以当行星齿轮没有自转趋势时,差速器总是将转矩M0平均分配给左、右两半轴齿轮,即M1=M2=0.5M0。www.qcwxjs.com当两半轴齿轮以不同转速朝相同方向转动时,设左半轴转速nl大于右半轴转速n2,则行星齿轮将按图D-C5-8gif-21上实线箭头n4的方向绕行星齿轮轴轴颈5自转,此时行星齿轮孔与行星齿轮轴轴颈间以及行星齿轮背部与差速器壳之间都产生摩擦,半轴齿轮背部与差速器壳之间也产生摩擦。这几项摩擦综合作用的结果,使转得快的左半轴齿轮得到的转矩M1减小,设减小量为0.5Mf;而转得慢的右半轴齿轮得到的转矩M1增大,增大量也为0.5Mf。因此,当左右驱动车轮存在转速差时,M1=0.5(M0-Mf)M2=0.5(M0+Mf)

左、右车轮上的转矩之差等于折合到半轴齿轮上总的内摩擦力矩Mf。

1,2-半轴齿轮;3-差速器壳;4-行星齿轮;5-行星齿轮轴;6-主减速器从动齿轮

图D-C5-7差速器运动原理示意图

1-半轴齿轮;2-半轴齿轮;3-行星齿轮轴;4-行星齿轮图D-C5-8差速器扭矩分配示意图差速器中折合到半轴齿轮上总的的内摩擦力矩Mf与输入差速器壳的转矩M0之比叫作差速器的锁紧系数K,即K=Mf/M0输出给转得快慢不同的左右两侧半轴齿轮的转矩可以写成:M1=0.5M0(1-K)M2=0.5M0(1+K)输出到低速半轴的转矩与输出到高速半轴的转矩之比Kb可以表示为:Kb=M2/M1=(1+K)/(1-K)

锁紧系数K可以用来衡量差速器内摩擦力矩的大小及转矩分配特性,目前广泛使用的对称式锥齿轮差速器,其内摩擦力矩很小,锁紧系数K为0.05~0.15,输出到两半轴的最大转矩之比Kb=1.11~1.35。因此可以认为无论左右驱动轮转速是否相等,对称式锥齿轮差速器总是将转矩近似平均分配给左右驱动轮的。这样的转矩分配特性对于汽车在良好路面上行驶是完全可以的,但当汽车在坏路面行驶时,却会严重影响其通过能力。

例如当汽车的一侧驱动车轮驶入泥泞路面,由于附着力很小而打滑时,即使另一车轮是在好路面上,汽车往往不能前进。这是因为对称式锥齿轮差速器平均分配转矩的特点,使在好路面上车轮分配到的转矩只能与传到另一侧打滑驱动轮上很小的转矩相等,以致使汽车总的牵引力不足以克服行驶阻力而不能前进。

为了提高汽车在坏路上的通过能力,可采用各种型式的抗滑差速器。抗滑差速器的共同特点是在一侧驱动轮打滑时,能使大部分甚至全部转矩传给不打滑的驱动轮,充分利用另一侧不打滑驱动轮的附着力而产生足够的牵引力,使汽车继续行驶。www.qcwxjs.com

抗滑差速器

为了防止车轮打滑而无法脱困的弱点,差速器锁应用而生。

但是差速器的锁死装置在分离和接合时会影响汽车行驶的稳定性。而限滑差速器(LSD)启动柔和,有较好的驾驶稳定性和舒适性,不少城市SUV和四驱汽车都采用限滑(抗滑)差速器。

限滑差速器主要通过摩擦片来实现动力的分配。其壳体内有多片离合器,一旦某组车轮打滑,利用车轮差的作用,会自动把部分动力传递到没有打滑的车轮,从而摆脱困境。不过在长时间重负荷、高强度越野时,会影响它的可靠性。

抗滑差速器种类常用的抗滑差速器有:强制锁止式差速器、高摩擦自锁式差速器(有摩擦片式、滑块凸轮式等结构型式)、牙嵌式自由轮差速器和托森差速器等。下面对强制锁止式差速器和托森差速器的结构和工作原理作比较简单的介绍。

强制锁止式差速器:

在对称式锥齿轮差速器上设置差速锁(见图D-C5-9)。可以用电磁阀控制的气缸操纵一个离合机构,使一侧半轴与差速器壳相接合。由该种差速器中的运动特性关系式:

ω1+ω2=2ω0如ω1或ω2=ω0,则必有ω1=ω2,这就相当于把左右两半轴锁成一体一同旋转。这样,当一侧驱动轮打滑而牵引力过小时,从主减速器传来的转矩绝大部分部分配到另一侧驱动轮上,使汽车得以通过这样的路段。

强制锁止式差速器结构简单,但一般要在停车时进行操纵。而且接上差速锁时,左右车轮刚性连接,将产生前转向困难,轮胎磨损严重等问题。

托森差速器

托森差速器的结构如图D-C5-10所示,该差速器由差速器壳,左、右半轴蜗杆、蜗轮轴和蜗轮等组成。差速器壳与主减速器的被动齿轮相连。

三对蜗轮通过蜗轮轴固定在差速器壳上,分别与左、右半轴蜗杆相啮合,每个蜗轮两端固定有直齿圆柱直齿轮。成对的蜗轮通过两端相互啮合的直齿圆柱齿轮发生联系。差速器外壳通过蜗轮轴带动蜗轮绕差速器半轴轴线转动,蜗轮再带动半轴蜗杆转动。https://www.qcwxjs.com/

托森差速器工作原理

当汽车转向时,左、右半轴蜗杆出现转速差,通过成对蜗轮两端相互啮合的直齿圆柱齿轮相对转动,使一侧半轴蜗杆转速加快,另一侧半轴蜗杆转速下降,实现差速作用。转速比差速器壳快的半轴蜗杆受到三个蜗轮给予的与转动方向相反的附加转矩,转速比差速器壳慢的半轴蜗杆受到另外三个蜗轮给予的与转动方向相同的附加转矩,从而使转速低的半轴蜗杆比转速高的半轴蜗杆得到的驱动转矩大,即当一侧驱动轮打滑时,附着力大的驱动轮比附着力小的驱动轮得到的驱动转矩大。

托森差速器又称蜗轮-蜗杆式差速器,其锁紧系数K为0.56,输出到两半轴的最大转矩之比Kb=3.5。

托森差速器内部为蜗轮蜗杆行星齿轮结构。托森差速器一般在四驱汽车上作为中央差速用。

它的工作是纯机械的而无需任何电子系统介入,基本原理是利用蜗轮蜗杆的单向传动(运动只能从蜗杆传递到蜗轮,反之发生自锁)特性,因此比电子液压控制的中央差速系统能更及时可靠地调节前后扭矩分配。https://www.qcwxjs.com/

如图奥迪A4Quattro四驱系统中,托森中央差速器(Torsen)在不同路况时对前后轮的动力分配图

热继电器工作原理及结构图解

关键字:继电器(144120)热继电器(18320)

热继电器作用:

热继电器主要用来对异步电动机进行过载保护,他的工作原理是过载电流通过热元件后,使双金属片加热弯曲去推动动作机构来带动触点动作,从而将电动机控制电路断开实现电动机断电停车,起到过载保护的作用。鉴于双金属片受热弯曲过程中,热量的传递需要较长的时间,因此,热继电器不能用作短路保护,而只能用作过载保护热继电器的过载保护。

热继电器的构造:

热继电器的结构如图2所示

图中:1——电流调节凸轮,2——片簧(2a,2b),3——手动复位按钮,4——弓簧片,5——主金属片,6——外导板,7——内导板,8——常闭静触点,9——动触点,10——杠杆,11——常开静触点(复位调节螺钉),12——补偿双金属片,13——推杆,14——连杆,15——压簧

使用热继电器对电动机进行过载保护时,将热元件与电动机的定子绕组串联,将热继电器的常闭触头串联在交流接触器的电磁线圈的控制电路中,并调节整定电流调节旋钮,使人字形拨杆与推杆相距一适当距离。当电动机正常工作时,通过热元件的电流即为电动机的额定电流,热元件发热,双金属片受热后弯曲,使推杆刚好与人字形拨杆接触,而又不能推动人字形拨杆。常闭触头处于闭合状态,交流接触器保持吸合,电动机正常运行。

若电动机出现过载情况,绕组中电流增大,通过热继电器元件中的电流增大使双金属片温度升得更高,弯曲程度加大,推动人字形拨杆,人字形拨杆推动常闭触头,使触头断开而断开交流接触器线圈电路,使接触器释放、切断电动机的电源,电动机停车而得到保护。

热继电器其它部分的作用如下:人字形拨杆的左臂也用双金属片制成,当环境温度发生变化时,主电路中的双金属片会产生一定的变形弯曲,这时人字形拨杆的左臂也会发生同方向的变形弯曲,从而使人字形拨杆与推杆之间的距离基本保持不变,保证热继电器动作的准确性。这种作用称温度补偿作用。

螺钉8是常闭触头复位方式调节螺钉。当螺钉位置靠左时,电动机过载后,常闭触头断开,电动机停车后,热继电器双金属片冷却复位。常闭触头的动触头在弹簧的作用下会自动复位。此时热继电器为自动复位状态。将螺钉逆时针旋转向右调到一定位置时,若这时电动机过载,热继电器的常闭触头断开。其动触头将摆到右侧一新的平衡位置。电动机断电停车后,动触头不能复位。必须按动复位按钮后动触头方能复位。此时热继电器为手动复位状态。若电动机过载是故障性的,为了避免再次轻易地起动电动机,热继电器宜采用手动复位方式。若要将热继电器由手动复位方式调至自动复位方式,只需将复位调节螺钉顺时针旋进至适当位置即可。

有些型号的热继电器还具有断相保护功能。其结构示意图如图3所示:

图3差动式断相保护装置示意图

(a)通电前,(b)三相通有额定电流,(c)三相均衡过载,(d)一相断电故障

热继电器的断相保护功能是由内、外推杆组成的差动放大机构提供的。当电动机正常工作时,通过热继电器热元件的电流正常,内外两推杆均向前移至适当位置。当出现电源一相断线而造成缺相时,该相电流为零,该相的双金属片冷却复位,使内推杆向右移动,另两相的双金属片因电流增大而弯曲程度增大,使外推杆更向左移动,由于差动放大作用,在出现断相故障后很短的时间内就推动常闭触头使其断开,使交流接触器释放,电动机断电停车而得到保护。

热继电器的工作原理

当电动机正常运行时,热继电器的热元件不会产生足够的热量使保护功能动作,其常闭触头保持闭合状态;当电动机过载时,热继电器的热元件会产生足够的热量使保护功能动作,其常闭触头断开,通过控制电路使电动机失电,从而保护电动机。当故障排除后,应使热继电器复位,才可以重新启动电动机。热继电器一般都具有手动复位和自动复位两种复位形式。这两种复位形式的转换,可借助复位螺钉的调节来完成,热继电器出厂时,生产厂家一般设定成自动复位状态。在使用时,热继电器设定成手动复位状态还是自动复位状态应根据控制回路的具体情况而定。一般情况下,应遵循热继电器保护动作后即使热继电器自动复位,被保护的电动机都不应自动再启动的原则,否则应将热继电器整定为手动复位状态。这是为了防止电动机在故障未被消除而多次重复再启动损坏设备。例如:一般采用按钮控制的手动启动和手动停止的控制电路,热继电器可设定成自动复位形式;采用自动元件控制的自动启动电路应将热继电器设定为手动复位形式。

热继电器的工作原理图

1——热元件,2——双金属片,3——导板,4——触点

热继电器的选用

(1)长期稳定工作的电动机可按电动机的额定电流选用热继电器。取热继电器整定电流的0.95~1.05倍或中间值等于电动机额定电流。使用时要将热继电器的整定电流调至电动机的额定电流值。

(2)应考虑电动机的绝缘等级及结构由于电动机绝缘等级不同,其的容许温升和承受过载的能力也不同。同样条件下,绝缘等级越高,过载能力就越强。即使所用绝缘材料相同,但电动机结构不同,在选用热继电器时也应有所差异。例如,封闭式电动机散热比开启式电动机差,其过载能力比开启式电动机低,热继电器的整定电流应选为电动机额定电流的60%~80%。

(3)应考虑电动机的启动电流和启动时间电动机的启动电流一般为额定电流的5~7倍。对于不频繁启动、连续运行的电动机,在启动时间不超过6s的情况下,可按电动机的额定电流选用热继电器。

(4)若用热继电器作电动机缺相保护,应考虑电动机的接法对于Y形接法的电动机,当某相断线时,其余未断相绕组的电流与流过热继电器电流的增加比例相同。一般的三相式热继电器,只要整定电流调节合理,是可以对Y形接法的电动机实现断相保护的。对于Δ形接法的电动机,其相断线时,流过未断相绕组的电流与流过热继电器的电流增加比例则不同。也就是说,流过热继电器的电流不能反映断相后绕组的过载电流,因此,一般的热继电器,即使是三相式,也不能为Δ形接法的三相异步电动机的断相运行提供充分保护。此时,应选用JR20型或T系列这类带有差动断相保护机构的热继电器。

(5)应考虑具体工作情况若要求电动机不允许随便停机,以免遭受经济损失,只有发生过载事故时,方可考虑让热继电器脱扣。此时,选取热继电器的整定电流应比电动机额定电流偏大一些。

精彩阅读推荐:热继电器跳闸怎么复位_热继电器跳闸的原因热继电器是干什么的_热继电器实现什么保护热继电器的电气符号_热继电器上h和a是什么意思热继电器蓝色的是什么按钮_热继电器电流整定

非常好我支持^.^

(60)90.9%

不好我反对

(6)9.1%

分享到:

分享此文章到新浪微博分享此文章到开心网分享此文章到人人网分享此文章到豆瓣网分享此文章到腾讯微博

加入收藏(0)+推荐给朋友+挑错

相关阅读:[电子说]富士通推出超小型30A汽车继电器2023-07-07[电子说]电气控制中互锁的作用2023-07-07[电子说]4种继电控制动作状态解读(常开/常闭/自锁/互锁)2023-07-07[电子说]新能源汽车电气架构与电源系统设计2023-07-06[电子说]5V继电器一般是如何工作的?2023-07-06[智能电网]发电机是靠什么发电的发电机主要组成部分2023-07-05[电子说]几个有趣的DIY电路分享2023-07-05[电子说]MCU控制继电器的电路设计解析2023-07-05

(发表人:姚远香)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇