博舍

人工智能杀伤网将改变战争形态 人工智能将军

人工智能杀伤网将改变战争形态

雷神公司生产的“丛林狼”(COYOTE)游荡弹药(LM)

03

杀伤链连续的过程

每个杀伤链都包括前面描述的连续过程,然而每个步骤的运行速度都是不同的。执行组合杀伤链所需的时间是各部分的总和。在上述过程中,操作员之间的互动速度影响了整个杀伤链的速度。随着更多的武器在打击过程中相互发送数据,战场物联网(IOBT)将开始发生演变。以人为中心的杀手链无法连接快速移动的作战系统,并使它们的攻击同步化,因此需要引入应用人工智能(AI)支持的新兴杀伤网。

04

杀伤网

杀伤网采用了人工智能(AI)支持的程序,以机器速度运行。这种设计可以在时间、空间上快速同步网络化弹药的效果。人工智能有可能实时成倍地加快传感器到射手的时间。机器学习(ML)是一种应用人工智能为机器提供数据,然后让机器能够自己学习的科学。人工智能和机器学习在射手和传感器的军事应用中被证明是有效的。新兴杀伤网的案例发生在2021年5月以色列针对哈马斯的“护墙”行动期间。以色列宣称这是历史上第一场“人工智能战争”。以色列处于一种不能用空间换取时间的军事状态,因为他们无路可退,因此,以色列必须在冲突中迅速采取行动。为了获得相对于对手的时间优势,并应用从以往战争中吸取的经验教训,以色列已经优先发展AI和ML用于军事行动,特别是在目标定位方面。各种形式的情报和监视的大量数据被以色列人工智能支持的杀伤网关联起来。哈马斯于2021年5月10日对以色列发动了不间断的火箭弹袭击,从而开始了这场冲突。在“铁穹”反导弹系统试图保护以色列免受哈马斯火箭弹攻击的同时,以色列以快速而精准地打击哈马斯的1500个目标的方式进行了反击。相关报告显示,“大规模人工智能机器为以色列大数据分析提供了各个层面的支持,从原始数据收集和拦截、数据研究和分析、一直到战略规划,目的是增强和加速整个作战过程,例如从对潜在目标的决策到飞行员从F-35驾驶舱实际实施攻击。这些目标包括哈马斯的火箭弹发射场、指挥和控制中心、武器储存场所和隧道系统。2021年5月12日,以色列国防军(IDF)的袭击打死了16名哈马斯的主要领导人。”以色列构造的杀伤网是一个人工智能程序的组合,上述人工智能程序极大地减少了以色列在2021年战争中的伤亡人数,并在11天内结束了冲突。

美军的联合全域作战概念

注:JADC2是现代杀伤网的愿景,旨在利用人工智能来同步数据和多域响应

05

数据

数据是战争的“弹药”,多域传感器可以收集到大量的数据,并应用人工智能工具进行及时处理,极大地缩短从传感器到射手的时间。杀伤网的目标是使用人工智能来同步打击范围内所有可用的武器,以精确的武器来打击敌人的优先目标,同时以机器的速度执行这种复杂的分配决策。美军将创建一个AI赋能的杀伤网,以最大的速度、范围和决策优势连接所有智能武器和多域效应,当这一目标实现后,战争将与以往不同。

在未来的几年里,AI赋能的杀伤网将会以前所未有的方式连接传感器和射手,从而加快战争的节奏、提高精确度和杀伤力。收集、分析、组织、共享和同步时间敏感的多域目标数据。一个有效的杀伤网有可能使LM和UCAV群的攻击同步化,在战场空间的特定区域形成一个持久的、精确的火力“杀伤箱”。如果大规模使用LM和UCAV来支持联合部队,那么战术上的胜利可以转化为作战上的成功。

关注公众号了解更多

会员申请请在公众号内回复“个人会员”或“单位会员

欢迎关注中国指挥与控制学会媒体矩阵

CICC官方网站

CICC官方微信公众号

《指挥与控制学报》官网

国际无人系统大会官网

中国指挥控制大会官网

全国兵棋推演大赛

全国空中智能博弈大赛

搜狐号

一点号返回搜狐,查看更多

人工智能产业发展现状与四大趋势

随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。

一人工智能的内涵与产业链

(一)人工智能的内涵

人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。

图1:人工智能内涵示意图

来源:火石创造根据公开资料绘制

(二)人工智能的发展历程

从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。

第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。

第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。

第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。

图2:人工智能的三次发展浪潮

来源:火石创造根据公开资料绘制

(三)人工智能的产业链

人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。

图3:人工智能产业链

来源:火石创造根据公开资料绘制

二全球人工智能产业发展现状

(一)人工智能产业规模保持快速增长

近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。

图4:2017-2025年全球人工智能产业规模(单位:亿美元)

数据来源:火石创造根据公开资料整理

(二)全球主要经济体争相布局,中美两国占据领先位置

人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。

图5:全球人工智能企业数量分布

数据来源:中国信通院,火石创造整理

(三)公共数据集不断丰富,关键平台逐步形成

全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。

(四)人工智能技术飞速发展,应用持续深入

近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。

三全球人工智能产业发展趋势

(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎

算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。

(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点

随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。

(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临

在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。

(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识

随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。

       原文标题 : 全球视野下人工智能产业发展现状与四大趋势

人工智能在国防领域的七大应用

-1-人工智能在国防领域的应用

人工智能在国防领域的应用主要用于7个方面:情报、监视和侦察,后勤,网络空间行动,信息操纵和深度伪造,指挥和控制,半自动和自动驾驶车辆,致命自主武器系统。

(1)情报、监视和侦察。由于有大量可用数据集,因此人工智能在情报领域有很大的用处。情报界以及有大量相关的正在进行中的人工智能项目了。就CIA(中央情报局)就有140个使用AI来完成图像识别和预测分析任务的项目。

(2)后勤。人工智能在军事后勤领域也有很大的应用潜力。空军已经开始使用人工智能来进行飞机维护预测。

(3)网络空间行动。人工智能也有望成为促进军事网络空间行动的关键技术。参议院军事委员会、美国网络司令部司令上将MichaelRogers早在2016年就认为,在网络空间领域只以来人类情报是一个失败的战略。随后他澄清说,应当应用一定程度的人工智能或机器学习技术。DARPA2016网络挑战赛也证明了AI赋能的网络工具的潜在能力,比赛参与者开发了能够自动检测、评估和分发补丁的AI算法。这些能力都可以在未来的网络活动中提供不同的优势。

(4)信息操纵和深度伪造。人工智能技术可以用来制造逼真的伪造图片、音频和视频,这也就是今年大火的“deepfakes”(深度伪造)技术。恶意攻击者可以用深度伪造技术来发起信息操纵活动,攻击每个,如生成虚假新闻报道、影响公共信息、侵蚀公共信任、损害名人名声。为了应对深度伪造技术,DARPA发起了媒体取证项目,以寻求自动检测修改、提供关于视觉媒体真实性信息的理由。

(5)指挥和控制。美国军方正在利用AI在分析方面的能力应用于指挥和控制。空军就开发了一个用于多域指挥和控制的系统,未来人工智能还可能用于融合来自不同域的传感器的数据来创建一个信息的单独源。

(6)半自动和自动驾驶车辆。所有的美国军事服务都在努力将人工智能融入到半自动和自动驾驶车辆中,包括战斗机、无人机、地面车辆和海军舰艇等。人工智能在这些领域的应用与商业半自动驾驶车辆类似,即使用人工智能技术来感知环境、识别物体、融合传感器数据、规划路径、以及与其他车辆之间进行通信。

(7)致命自主武器系统(LAWS)。LAWS是一种特殊的武器系统,使用传感器和计算机算法来独立地识别目标和指挥武器系统在没有人为干预的情况下打击目标。虽然这样的系统目前还不存在,但军事专家相信在未来通信降级或拒绝的特殊环境下,传统武器系统无法工作的情况下LAWS会启到很重要的作用。

-2-军事AI融合的挑战

从冷战开始,主要的国防相关技术在商用之前都是由政府主导的项目首先开发的,包括原子核技术、GPS和互联网技术。DARPA的战略计算计划(StrategicComputingInitiative)从1983到1993年10年间共投入10亿美元来开发人工智能在军事应用领域的探索,但进展缓慢。目前,商业公司正在引领人工智能的发展,随后国防部才采纳这些工具并应用于军事领域。对如此具有战略重要性的技术来说,只有一小部分商业公司在开发是非常不同寻常的。除了投资领域的快速变化外,人工智能技术在军事领域的应用存在来自技术、过程、人员和文化方面的挑战。

2.1国际竞争

随着人工智能军事应用的规模和复杂程度不断变大,国会和国防部许多官员都非常关注该领域的国际竞争。参议员TedCruz在thedawnofAI听证会的评论中表示,对美国来说,放弃发展人工智能的领导地位(相当于中国、俄罗斯等国家)不仅会使美国处于技术劣势,还可能对国家安全产生严重影响。

2.2人工智能的机遇和挑战

(1)自治。许多自主系统都多少使用了人工智能技术。相关专家认为军事系统在一些特殊任务中替换人类会获有很大的优势,如:长时间的情报收集和分析,清除化学武器对环境污染带来的破坏等。在这些任务中,自主系统可以减少相关风险,降低成本,为国防部使命提供一系列的价值,如下图所示。

(2)速度和耐力。人工智能引入了在极限时间范围内作战的方法,提供给系统在GHZ速度反应的能力,具有动态加速对抗速度的潜力。现在一般公认的是,时间在战争中具有非常重要的优势,并且反过来会促进军事人工智能应用的广泛应用。

(3)规模化。人工智能可以通过增强人类能力和使用更加廉价但性能更佳的军事系统来形成群聚效应。并且,人工智能系统可以增加单个服务单元的效率。有分析师称,人工智能系统的使用可能使得军事力量与人力规模和经济实力无关。

(4)信息优势。人工智能为数据量指数级增长提供了一种有效的分析方法。据国防部数据,军队共拥有11000架无人机,每个无人机每天都记录了相当于三个NFL赛季的高清录像。但国防部没有足够的人员或系统来处理这些数据以提取出有价值的情报。未来人工智能算法会生成自己的数据来进一步分析,以完成类似提取非结构化数据、金融数据、选举结果到报告中的任务。

(5)预测性。人工智能算法可以产生一些出乎意外的结果。并确实有很多失败的案例,前DARPA主任AratiPrabhakar表示,我们发现人工智能是一项非常有能力的技术,但同时也是非常有限的,而且出错的一些方式可能人类从来不会发生。如果人工智能系统发规模部署,那么系统失败可能会引发明显的风险。分析师称人工智能系统识别的方式可能是相同的,可能会引发大规模的破坏效应。

(6)可解释性。目前,性能最好的人工智能算法都无法解释其工作过程。DARPA和其他组织都在努力来对人工智能算法有更好的理解。可解释性对军事应用来说具有特殊的意义,因为人工智能系统推理的透明度会影响操作人员对系统和系统结果的信任度。可解释性还会对军事AI系统可验证和确认的性能带来影响。由于缺乏可解释的输出,AI系统在军事测试时无法通过审计来确认系统满足了性能的标准。

(7)漏洞利用。人工智能系统可能会增加系统被利用的可能性。首先,AI系统的普及增加了可被黑的系统的数量。其次,AI系统存在被窃取的漏洞,而且几乎都是基于软件的方式。最后,对手还可以精心引入图像分类器和其他类型的错误引发的漏洞。这些漏洞引发了我们对鲁棒性数据安全、网络安全、测试和评估过程的需求。

-3-人工智能对战场的影响

尽管人工智能还没有以一种正式的形式进入战场,但专家们预测了人工智能会对未来战争带来潜在影响。这种影响将是多方面的,包括商业投资率、国际竞争力、促进人工智能的能力、对AI应用的军事态度、AI特定战争概念的开发。

许多专家断言人工智能军事应用是一种“必然”,认为它必然会带来重大影响。然而,2016年1月,时任联席会议副主席保罗·塞尔瓦将军指出国防部仍在评估人工智能的潜力。企业开发的人工智能技术提供了军事作战的乘数效应吗?如果是,那么可能需要改变我们的战斗方式。如果不是,那么军队需要提高现有的能力以在对手面前取得一定的优势。目前国会也在考虑影响军事AI应用的一些场景并对其进行分析和监管。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇