促进人工智能发展的四种技术
[[419350]]
“人工智能”这一术语最早出现在1956年。人工智能是通过机器(特别是计算机系统)模仿人类智力的过程。专家系统、自然语言处理、语音识别、机器视觉是人工智能应用的一些典型例子。人工智能如今被广泛用于根据消费者先前的搜索和购买以及其他在线活动,为消费者提供定制建议。在商业应用中,人工智能在产品优化、库存规划和物流等方面发挥着关键作用。
人工智能及其应用
医疗保健:医疗保健行业采用的人工智能可以提供量身定制的药物和X光片的诊断。个人保健助理可以充当私人教练,提醒患者吃药、锻炼以及饮食健康。制造:制造行业采用人工智能可能会利用循环网络(这是一种与序列数据一起使用的深度学习网络形式)来评估工厂设施中的物联网数据,因为它从连接的设备输入,以预测负载和需求。生命科学:人工智能技术可以释放数据的全部潜力来解决人们面临的一些重大健康问题,从保证药物安全到更快地将新药推向市场。零售:零售行业采用人工智能提供的虚拟购物功能提供量身定制的建议以及讨论用户的购买选择。人工智能还将促进库存管理和站点布局。银行:银行采用的人工智能提高了人类活动的速度、精度和效率。人工智能方法可用于金融机构,以确定哪些交易可能是欺诈性的,实施快速准确的信用评分,并使劳动密集型数据管理活动实现自动化。•公共部门:人工智能可以使智慧城市更加智能,它可以帮助应急机构做好任务准备和预防性维护。人工智能具有全面提高计划效率和有效性的潜力。
1.机器学习机器学习是一种自动创建分析模型的数据分析类型。这是一个人工智能领域,其基础是计算机可以从数据中学习、识别模式,并在很少或没有人工输入的情况下做出选择。
机器学习的应用:大多数处理大量数据的企业都承认机器学习技术的重要性。
金融领域的服务:银行和其他金融机构将机器学习用于识别具有价值的数据见解和防止欺诈这两个主要目的。医疗保健服务:由于可穿戴设备和传感器的发展可以利用数据实时分析患者的健康状况,机器学习成为医疗保健领域的快速增长趋势。医学专家可以使用该技术来检查数据,并发现可能导致更好诊断和治疗的趋势或危险信号。政府:因为政府部门有许多可以挖掘洞察力的数据来源,所以公共安全和公用事业等政府部署需要采用机器学习技术。零售:零售行业可以使用机器学习来评估消费者的购买历史,他们的网站会根据消费者之前的购买情况推荐可能喜欢的商品。零售商使用机器学习来收集、评估和应用数据来定制购物体验、执行营销活动、定价优化、商品供应计划和消费者洞察。2.深度学习深度学习是一种机器学习,在其应用中,计算机被训练执行类似人类的任务,例如语音识别、图片识别和预测。深度学习设置了有关数据的基本参数,并通过检测利用多层处理的模式来训练计算机自行学习,而不是通过预先设定的模式安排数据。
深度学习的应用:
语音识别:用于语音识别的深度学习在企业和学术领域都获得了发展和进步。为了检测人类的语音和语音模式,Xbox、Skype、GoogleNow和Apple的Siri等已经在人工助理系统中使用了深度学习技术。自然语言处理:多年来,深度学习的关键组成部分神经网络一直被用于处理和解释文本。这种方法是文本挖掘的一个子集,可用于在各种来源中查找模式,其中包括消费者投诉、医疗记录和新闻报道等。图像识别:自动图片字幕和场景描述是图像识别的两个实际应用。在自动驾驶汽车中采用360度摄像头技术也将增强图片识别能力。推荐系统:亚马逊公司和Netflix推广了推荐系统,该系统可以根据用户之前的行为和活动预测其下一步可能感兴趣的内容。深度学习可用于在音乐品味或服装偏好等复杂环境中改进跨多个平台的建议。3.自然语言处理(NLP)自然语言处理(NLP)是一个人工智能领域,可以帮助计算机理解、解释和操纵人类语言。为了弥合人类交流和机器理解之间的差距,自然语言处理(NLP)依赖于多个领域,包括计算机科学和计算语言学。自然语言处理并不是一个新学科,但由于人们对人机通信的兴趣日益浓厚,以及海量数据的可用性、强大的计算能力和改进的算法,自然语言处理技术正在迅速发展。
自然语言处理(NLP)的应用:
文本分析和自然语言处理:文本分析对单词进行计数和分类,以从大量材料中提取结构和含义,与自然语言处理密切相关。自然语言处理(NLP)在日常生活中的例子:自然语言处理(NLP)在人们的日常生活中有广泛的常见和实际应用。贝叶斯垃圾邮件过滤是一种统计自然语言处理方法,可将垃圾邮件术语与合法电子邮件进行比较以识别垃圾邮件。人们是否曾经错过一些重要电话,然后在电子邮件收件箱或智能手机应用程序上阅读语音邮件记录?这就是语音到文本的转换,也是自然语言处理(NLP)的一项功能。4.计算机视觉计算机视觉是一个人工智能领域,它训练计算机分析和理解图像。机器可以使用来自摄像头和视频的数字图片以及深度学习模型可靠地检测和分类事物,然后对它们观察到的内容做出反应。在许多领域,计算机视觉接近并超越了人类的视觉能力,从识别人到分析足球比赛的实况。
计算机视觉的应用:
图片分割将图像分成许多区域或片段,每个区域或片段都可以独立进行研究。物体检测是识别照片中特定物体的过程。足球场、进攻球员、防守球员、足球等都可以使用单个图像中的高级对象识别进行识别。为了构建边界框并识别其中的所有内容,这些模型使用X和Y坐标进行标识。面部识别是一种复杂的对象检测形式,它不仅可以识别图片中的特定人物。边缘检测是一种确定项目或景观的边缘以更好地识别图像中内容的方法。识别图片中重复形式、颜色和其他视觉线索的技术称为模式检测。照片的分类将它们分成不同的类别。特征匹配是一种模式识别形式,它可以比较图片的相似性以帮助对其进行分类。
人工智能导论
第一章1.作为计算机科学的一个分支,人工智能的英文缩写是()。AI
2.人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门交叉科学,它涉及(D)。
A.自然科学B.社会科学C.技术科学D.A、B和C
3.人工智能定义中的“智能”,涉及到诸如(A)等问题。
A.B、C和DB.意识C.自我D.思维
4.下列关于人工智能的说法不正确的是(C)。
A.人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。
B.人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。
C.自1946年以来,人工智能学科经过多年的发展,已经趋于成熟,得到充分应用。
D.人工智能不是人的智能,但能像人那样思考,甚至也可能超过人的智能。
5.人工智能经常被称为世界三大尖端技术之一,下列说法中错误的是(B)。
A.空间技术、能源技术、人工智能
B.管理技术、工程技术、人工智能
C.基因工程、纳米科学、人工智能
D.人工智能已成为一个独立的学科分支,无论在理论和实践上都已自成系统
6.人工智能与思维科学的关系是实践和理论的关系。从思维观点看,人工智能不包括(A)。
A.直觉思维B.逻辑思维C.形象思维D.灵感思维
7.强人工智能强调人工智能的完整性,下列(C)不属于强人工智能。
A.(类人)机器的思考和推理就像人的思维一样
B.(非类人)机器产生了和人完全不一样的知觉和意识
C.看起来像是智能的,其实并不真正拥有智能,也不会有自主意识
D.有可能制造出真正能推理和解决问题的智能机器
8.被誉为“人工智能之父”的科学大师是(D)。
A.爱因斯坦B.冯·诺依曼C.钱学森D.图灵
9.电子计算机的出现使信息存储和处理的各个方面都发生了革命。下列说法中不正确的是(C)。
A.计算机是用于操纵信息的设备
B.计算机在可改变的程序的控制下运行
C.人工智能技术是后计算机时代的先进工具
D.计算机这个用电子方式处理数据的发明,为实现人工智能提供了一种媒介
10.Wiener从理论上指出,所有的智能活动都是(A)机制的结果,而这一机制是有可能用机器模拟的。这项发现对早期AI的发展影响很大。
A.反馈B.分解C.抽象D.综合
11.(B)年夏季,一批有远见卓识的年轻科学家在达特茅斯学会上聚会,共同研究和探讨用机器模拟智能的一系列有关问题,首次提出了“人工智能(AI)”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。
A.1946B.1956C.1976D.1986
12.用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机。下列(D)不是人工智能研究的主要领域。
A.深度学习B.计算机视觉C.智能机器人D.人文地理
13.人工智能在计算机上的实现方法有多种,但下列(B)不属于其中。
A.传统的编程技术,使系统呈现智能的效果
B.多媒体拷贝复制和剪贴的方法
C.传统开发方法而不考虑所用方法是否与人或动物机体所用的方法相同
D.模拟法,不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似
14.人工智能当前的发展具有“四新”特征,下面(A)不属于其中之一。新挑战
A.新能源B.新突破C.新动能D.新高地
15.通过总结人工智能发展历程中的经验和教训,我们可以得到的启示是(D)。
A.尊重发展规律是推动学科健康发展的前提,实事求是设定发展目标是制定学科发展规划的基本原则
B.基础研究是学科可持续发展的基石
C.应用需求是科技创新的不竭之源,学科交叉是创新突破的“捷径”,宽容失败是支持创新的题中应有之义
D.A、B和C
16.人工智能的发展突破了“三算”方面的制约因素,这“三算”不包括(C)。
A.算法B.算力C.算子D.算料
17.得益于人工智能技术的兴起,一些行业岗位将呈现出显着的增长趋势,但下面(C)不属于其中之一。
A.数据科学家B.机器学习工程师C.电脑维修工程师D.AI硬件专家
18.有研究指出,人工智能可能会给人类社会带来潜在威胁,包括(D)。
A.数字安全B.物理安全C.政治安全D.A、B和C
19.有研究者认为,让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患已经在(B)中呈现过,其关键是允不允许机器拥有自主意识的产生与延续。
A.法律文件B.多部电影C.政府报告D.一些案例
第三章1.19世纪以来,当面临大量数据时,社会都依赖于采样分析。但是采样分析是(C)时代的产物。
A.电脑B.青铜器C.模拟数据D.云
2.长期以来,人们已经发展了一些使用尽可能少的信息的技术。例如,统计学的一个目的就是(C)
A.用尽可能多的数据来验证一般的发现
B.同尽可能少的数据来验证尽可能简单的发现
C.用尽可能少的数据来证实尽可能重大的发现
D.用尽可能少的数据来验证一般的发现。
3.因为大数据是建立在(A),所以我们就可以正确地考察细节并进行新的分析。
A.掌握所有数据,至少是尽可能多的数据的基础上的
B.在掌握少量精确数据的基础上,尽可能多地收集其他数据
C.掌握少量数据,至少是尽可能精确的数据的基础上的
D.尽可能掌握精确数据的基础上
4.直到今天,我们的数字技术依然建立在精准的基础上,这种思维方式适用于掌握(A)的情况。
A.小数据量B.大数据量C.无数据D.多数据
5.当人们拥有海量即时数据时,绝对的精准不再是人们追求的主要目标。当然,(C)。
A.我们应该完全放弃精确度,不再沉迷于此
B.我们不能放弃精确度,需要努力追求精确度
C.我们也不是完全放弃了精确度,只是不再沉迷于此
D.我们是确保精确度的前提下,适当寻求更多数据
6.为了获得更广泛的数据而牺牲了精确性,也因此看到了很多如若不然无法被关注到的细节。(B)。
A.在很多情况下,与致力于避免错误相比,对错误的包容会带给我们更多问题
B.在很多情况下,与致力于避免错误相比,对错误的包容会带给我们更多好处
C.无论什么情况,我们都不能容忍错误的存在
D.无论什么情况,我们都可以包容错误
7.以前,统计学家们总是把他们的兴趣放在提高样本的随机性而不是数量上。这时因为(C)。
A.提高样本随机性可以减少对数据量的需求
B.样本随机性优于对大数据的分析
C.可以获取的数据少,提高样本随机性可以提高分析准确率
D.提高样本随机性是为了减少统计分析的工作量
8.研究表明,在少量数据情况下运行得最好的算法,当加入更多的数据时,(A)。
A.也会像其他的算法一样有所提高,但是却变成了在大量数据条件下运行得最不好的
B.与其他的算法一样有所提高,仍然是在大量数据条件下运行得最好的
C.与其他的算法一样所有提高,在大量数据条件下运行得还是比较好的
D.虽然没有提高,还是在大量数据条件下运行得最好的
9.如今,要想获得大规模数据带来的好处,混乱应该是一种(D)。
A.不正确途径,需要竭力避免的
B.非标准途径,应该尽量避免的
C.非标准途径,但可以勉强接受的
D.标准途径,而不应该是竭力避免的
10.研究表明,只有()的数字数据是结构化的且能适用于传统数据库。如果不接受混乱,剩下(C)的非结构化数据都无法被利用。
A.95%,5%B.30%,70%C.5%,95%D.70%,30%
11.寻找(B)是人类长久以来的习惯,即使确定这样的关系很困难而且用途不大,人类还是习惯性地寻找缘由。
A.相关关系B.因果关系C.信息关系D.组织关系
12.在大数据时代,我们无须再紧盯事物之间的(A),而应该寻找事物之间的(),这会给我们提供非常新颖且有价值的观点。
A.因果关系,相关关系B.相关关系,因果关系
C.复杂关系,简单关系D.简单关系,复杂关系
13.所谓相关关系,其核心是指量化两个数据值之间的数理关系。相关关系强是指当一个数据值增加时,另一个数据值很有可能会随之(C)。
A.减少B.显现C.增加D.隐藏
14.通过找到一个现象的(D),相关关系可以帮助我们捕捉现在和预测未来。
A.出现原因B.隐藏原因C.一般的关联物D.良好的关联物
15.大数据时代,专家们正在研发能发现并对比分析非线性关系的技术工具。通过(A),相关关系帮助我们更好地了解了这个世界。
A.探求“是什么”而不是“为什么”
B.探求“为什么”而不是“是什么”
C.探求“原因”而不是“结果”
D.探求“结果”而不是“原因”
第四章1.搜索是大多数人生活中的(B)。
A.稀罕情况B.自然组成部分
C.不可能出现D.大概率事件
2.搜索及其执行是人工智能技术的(C)。
A.一般应用B.重要应用C.重要基础D.不同领域
3.关于搜索算法,下面不正确或者不合适的说法是(D)。
A.利用计算机的高性能来有目的的穷举一个问题的部分或所有的可能情况,从而求出问题的解的一种方法
B.根据初始条件和扩展规则构造一颗“解答树”并寻找符合目标状态的节点
C.可以划分成两个部分——控制结构(扩展节点的方式)和产生系统(扩展节点)
D.主要是通过修改其数据结构来实现的
4.关于盲目搜索,下列选项中不正确或者不合适的选项是(A)。
A.又叫启发式搜索,是一种多信息搜索
B.这些算法不依赖任何问题领域的特定知识
C.一般只适用于求解比较简单的问题
D.通常需要大量的空间和时间
5.盲目搜索通常是按预定的搜索策略进行搜索,常用的盲目搜索有(C)两种。
A.连续搜索和重复搜索B.上下搜索和超链接搜索C.广度优先搜索和深度优先搜索D.多媒体搜索和AI搜索
6.状态空间图是一个有助于形式化搜索过程的(D),是对一个问题的表示。
A.程序结构B.算法结构C.模块结构D.数学结构
7.回溯算法是所有搜索算法中最为基本的一种算法,它采用一种“(A)”思想作为其控制结构。
A.走不通就掉头B.一走到底
C.循环往复D.从一点出发不重复
8.盲目搜索是不使用领域知识的不知情搜索算法,它有3种主要算法,下列(C)不属于其中。
A.深度优先搜索B.广度优先搜索
C.广度迭代搜索D.迭代加深的深度优先搜索
9.知情搜索是用启发法,通过(B)来缩小问题空间,是问题求解中通常是很有用的工具。
A.既不限定搜索深度也不限定搜索宽度
B.限定搜索深度或是限定搜索宽度
C.提高搜索算法智能化水平D.提高搜索算法的软件工程设计水平
10.爬山法是贪婪且原始的,它可能会受到3个常见问题的困扰,但下列(D)不属于这样的问题。
A.山麓问题B.高原问题C.山脊问题D.压缩问题
11.启发法是用于解决问题的一组常用指南。使用启发法,我们可以得到一个(A)的结果。
A.很有利但不能保证B.很有利且可以得到有效保证
C.不利且不能得到保证D.不明确
12.启发式搜索方法的目的是在考虑到要达到的目标状态情况下,(B)节点数目。
A.极大地增加B.极大地减少C.稳定已有的D.无须任何
13.有3种为找到任何解的知情搜索的特定搜索算法,但下列(C)不属于其中之一。
A.爬山法B.最陡爬坡法C.直接爬坡法D.最佳优先法
14.有一些搜索算法的设计灵感来自于自然系统,例如遗传、(D)等典型算法在图像边缘检测、图像分割、图像识别、图像匹配、图像分类等领域有广泛应用。
A.蚁群B.模拟退火C.粒子群D.A、B和C
第七章1.在线影片租赁服务商Netflix的主营业务是提供互联网随选流媒体播放,它所依赖的关键服务是(B)。
A.搜索引擎B.推荐引擎C.百度引擎D.谷歌引擎
2.下列(D)信息服务利用了人工智能的机器学习技术。
A.智能语音助手SiriB.Alexa个人助理客户端
C.Netflix电影推荐D.上述所有都是
3.机器学习最早的发展可以追溯到(A)。
A.英国数学家贝叶斯在1763年发表的贝叶斯定理
B.1950年计算机科学家图灵发明的图灵测试
C.1952年亚瑟·塞缪尔创建的一个简单的下棋游戏程序
D.唐纳德·米奇在1963年推出的强化学习的tic-tac-toe(井字棋)程序
4.学习是人类具有的一种重要的智能行为,社会学家、逻辑学家和心理学家都各有其不同的看法。关于机器学习,合适的定义是(D)。
A.兰利的定义是:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”
B.汤姆·米切尔的定义是:“机器学习是对能通过经验自动改进的计算机算法的研究”
C.Alpaydin的定义是:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准”
D.A、B、C都可以
5.机器学习的核心是“使用(C)解析数据,从中学习,然后对世界上的某件事情做出决定或预测”。
A.程序B.函数C.算法D.模块
6.有三种主要类型的机器学习:监督学习、非监督学习和(B)学习,各自有着不同的特点。
A.重复B.强化C.自主D.优化
7.监督学习的主要类型是(A)。
A.分类和回归B.聚类和回归C.分类和降维D.聚类和降维
8.无监督学习又称归纳性学习,分为(D)。
A.分类和回归B.聚类和回归C.分类和降维D.聚类、离散点检测和降维
9.强化学习使用机器的个人历史和经验来做出决定,其经典应用是(C)。
A.文字处理B.数据挖掘C.游戏娱乐D.自动控制
10.要完全理解大多数机器学习算法,需要对一些关键的数学概念有一个基本的理解。机器学习使用的数学知识主要包括(D)。
A.线性代数B.微积分C.概率和统计D.A、B、C
11.机器学习的各种算法都是基于(A)理论的。
A.贝叶斯B.回归C.决策树D.聚类
监督学习的大部分算法基于回归理论。
12.在机器学习的具体应用中,(D)决定了学习系统基本结构的工作内容,确定了学习部分所需要解决的问题。
A.环境B.知识库C.执行部分D.A、B、C
以上解答若有错误之处,请及时留言错误处及修改后答案,我会及时更正。
doc版本下载地址:
https://wws.lanzous.com/iqpIbimdaeh
人工智能会取代人类,让很多人失业吗
什么是人工智能?人工智能简称AI,它是计算机科学的一个分支,这项技术的最终目的是为了模拟、延伸和扩展人的智能,使机器能够胜任一些通常需要人类智能才能完成的复杂工作,从而帮助人类更好、更快地发展,让人类过上更加美好幸福的生活。
[[424895]]
一些人将人工智能与机器人画等号,这很片面。研究人工智能是为了了解智能的实质,并据此创造出能以人类智能相似的方式作出反应的智能机器,并不单单只是制造出一种像人那样的机器人,像语音识别、图像识别、自然语言处理、自动驾驶等,它们都是人工智能的研究和应用领域。
总之,需要人类的智慧来参与和处理的事情,都可以用到人工智能。像手机现在就已经应用了很多人工智能的研究成果,比如语音输入法,人工智能技术的应用也使得智能手机变得更加智能。
人类长久以来的梦想,就是希望能够让机械代替人力来干活,进行生产劳作,这不仅是体力方面,在脑力劳动方面也有这个需求。
人工智能的概念提出于1956年,在此之前,人类已经能够利用机械实现半自动,现在人类在一些工业生产领域还实现了自动化,但这远远不够,过去的自动化只是在已经预设好的程序下循环往复地运行,像新闻撰写、自动驾驶等领域就实现不了自动化。但在人工智能技术的帮助下,人类却可以完全实现自动化,因为机器或者软件在自动化运行的过程中还能自主学习,并根据反馈的数据实时作出决策,改进执行过程。
人工智能会超越甚至取代人类,让很多人失业吗?
这种担心,不无道理。毕竟不是每个人都是那么优秀,大部分人的能力都很一般,既没有雄厚的资产,也没有掌握什么高技术。这些底层工作,特别是那些没技术的体力劳动,以及一些简单的脑力劳动,在未来势必都会被人工智能所取代的。即使我们这几代人看不到,在几百年后也必然会出现这种情况。
现在人工智能在某些方面的能力已经超越了人类,比如围棋。再发展一些年头,人工智能的智慧水平必然会在很多领域超越人类。
更关键的是,这些拥有智慧的机器不仅不怕脏和累,在工作过程中出错的概率也更小。如果你是老板,你也想拥有这样的“员工”。可见,人工智能未来让很多人失业,并不是一句空谈。
技术革新确实会让一部分人失业,但同时也会创造新的职业。不过,人工智能带来的冲击,比一般的产业技术革新更震撼,触及到的行业非常多。有人说,我可以给机器抹机油,但这项工作也可以由机器代劳。大规模应用人工智能后,以往劳动密集型的产业就再也不需要那么多工人了,而创造出来的新职业,则是管理这些设备的高技术人才。显然,这并不需要太多人。
那剩余的人怎么办呢?其实,这个问题完全可以从税收和分配机制上进行解决。为了避免养懒人,以往一个人干的活,完全可以分给5个人干。而蛋糕做大了也并没有坏处,即使占比很小,你所分配的份额也比以前多。
这个世界上并没有永恒不变的行业和职业,厨师和理发师未来也有可能被智能机器替代。为了应对这种冲击,所有人都必须要不断地改变自己,努力学习,只有这样,社会才会进步。
除了失业方面的考虑,更为关键的是人工智能会取代人类,主宰未来社会吗?这样的主题,已经出现在了一些科幻电影中。我们赋予了机器智慧,到头来却不听使唤,甚至还反叛人类,这肯定不是我们所愿意看到的。
有些人可能不相信机器能够拥有自我意识,不过根据科学家对人脑以及思维意识的产生和运作机制的了解,机器确实可以拥有意识,但前提是硬件基础要达到一定水平才能实现。
[[424896]]
至于高级人工智能拥有自我意识后,还会听人类的使唤吗?人类该怎么办?真的很难给出答案。或许我们可以通过某种机制避免这样的事情发生,或者禁止创造拥有自我意识的智能机器。
人工智能的最终目的就是为了让人们的生活更美好,代替很多人的体力劳动,让大家有更多的时间去学习、去思考、去探索未来和未知!只有当我们不为生活发愁时,我们才会发展的更好。纵观科学技术的发展史,做出重大贡献的基本上都是位于社会金字塔中上部的那些人。
人工智能将会让我们的生活变成什么样?虽然人工智能已经发展了好几十年,但在初期发展的十分缓慢,现阶段我们还处于人工智能发展的初级阶段。不过,人工智能技术现阶段已经开始重塑多个行业的面貌。可以断定,我们现在就已经处于人工智能爆发的元年了,现在每一个人都能享受这项技术带来的巨大改变。
人工智能的应用领域有很多。结合城市交通出行大数据,利用人工智能进行自动决策,将为我们带来更加智慧的路,从而降低交通事故的发生概率,缓解拥堵。在科学研究领域,人工智能也有大显身手之处,因为科学研究往往需要进行大量的实验,产生大量的实验数据,如果利用人力进行分析,往往费时费力,这一过程完全可以交给机器。物联网和人工智能结合,智能生活也将走进千家万户。
[[424897]]
移动互联网的出现,仅仅用了10多年时间,就让我们的生活方式发生了巨大的改变。人工智能肯定会让我们的生活更上一层楼,未来可期。人工智能技术不仅可以改变一部手机、一辆车、一个家庭,还将改变整个社会的产业,促进经济飞速发展。
[[424898]]
在科学技术这个股力量的推动下,几百年前,人类总共进行了三次大的工业或者说科技革命,而人工智能则将带领我们步入第四次科技革命,从信息时代步入智能时代。而以人工智能为核心驱动力的智能经济也正在成为经济发展的新引擎。
人工智能和基因技术、空间技术、纳米技术等都是21世纪最为尖端的技术。正是因为人工智能技术对未来十分重要,所以各大科技公司都希望能够分一杯羹,这一行业也将成为竞争最为激烈的一个行业之一。