博舍

我们如何使用人工智能防治空气污染 人工智能 环境污染

我们如何使用人工智能防治空气污染

空气污染仍然是几乎所有地方的一个问题,尽管全球变暖、生物多样性丧失、土壤退化和淡水资源不可持续利用等其他环境问题变得更加突出,但空气污染仍然是一个值得我们关注和采取行动的问题。

根据世界卫生组织的数据,每年有300万至800万人过早死亡,因为他们频繁呼吸的空气中含有有害物质,可能会影响呼吸系统,导致炎症疾病或影响人体免疫系统。

尽管有几项法规旨在减少空气污染物的排放,并对周围空气污染物的浓度水平进行了限制,但欧洲各地的测量结果仍然经常显示,浓度水平超过了对人类健康和食品生产安全的阈值。

世界其他地区面临更大的问题。比如有时,在南亚、东亚、非洲和南美洲的特大城市,污染是如此严重,以至于人们几乎无法正常工作或在街道上穿行。

因此,我们被建议继续甚至扩大对空气污染的监测,并进一步开发所需的工具来分析这些测量数据,并对空气污染物作出预测,以便弱势群体得到警告,并采取对策。在本文中,我们将看到如何使用人工智能防治空气污染。

人工智能防治空气污染关于全球空气污染,我们有很多但又太少的数据。为了构建好的人工智能工具,人工智能需要大量数据,有必要了解哪些数据是可用的,以及这些数据包含哪些信息。自20世纪80年代以来,世界多个地区建立了包括固定台站和移动平台在内的空气污染监测网络。

卫星仪器虽然覆盖全球,但测量频率不够高,对人类呼吸空气的地球表面附近的测量精度也有限。世界上许多地区几乎没有空气质量监测站,即使在监测站网络比较密集的欧洲,相邻监测站之间通常也有十公里甚至一百公里的距离。

人工智能可以在扩大全球空气污染监测网络中发挥作用,例如,作为解释从现代低成本传感器设备获得的测量信号的一种手段。如果将此类设备与传统台站的测量结合使用,则可以使用此类设备来填补监测空白。

人工智能可以帮助分析和预测空气污染空气污染的解释和预测目前需要复杂的数值模型,也就是所谓的化学传输模型,这些模型使用包含数千行并在世界上最大的超级计算机上运行的计算机代码来模拟天气和空气污染化学。

将AI用于这些目的会带来一些挑战,这些挑战不同于其他AI应用程序中常见的问题。上世纪90年代,人工智能方法首次在当地空气质量预测的背景下进行了测试。当时,机器学习算法和计算能力比今天要弱100万倍左右,所以机器学习的结果只比用经典统计方法得到的结果好一点点。

2012年之后,所谓的卷积神经网络在图像识别等典型人工智能任务上取得了突破,大气科学家也再次对人工智能产生了兴趣。自2018年以来,几项研究表明,先进的机器学习技术确实可以在当地生成高质量的空气污染预报。

机器学习模型很快还将提供替代,且计算成本更低的解决方案,预测一个地区的空气污染。此类系统可能在混合方法中工作得最好,其中天气信息来自传统的数值模拟,也就是天气预报,而空气质量信息来自测量值。

人工智能在空气污染管理中的机会和风险低成本的空气污染传感器与人工智能和混合模型的结合,可能会提供更详细的空气污染地图,因此,与目前负担得起的措施相比,更有针对性的缓解措施。

结合生理传感器和医疗信息系统,基于人工智能的污染监测最终可能实现对吸入污染物剂量的直接测量,从而帮助弱势群体更好地计划他们的户外活动和避免危险环境。事实上,欧洲和其他地方的几家公司已经在宣传基于人工智能的空气质量信息。

然而,在这一点上,这类系统的质量常常是有问题的,而且很少有关于它们在实践中工作得如何的信息。与其他应用领域一样,人工智能解决方案的最大危险出现在盲目信任时。因此,重要的是我们要充分了解基于AI的空气质量监测系统的能力和局限性,并且我们要始终控制自己的行动。

人工智能在21世纪水与环境领域应用的问题及对策

水环境污染识别与风险响应

识别和响应水污染事件是高效防控水环境污染的重要前提,也是供水安全的基础保障。

水质指标建模与数据融合。AI 在水质指标模型化及多维时空数据融合等方面的应用实践,为提升水污染的研判能力和防控水平创造了新机遇(图 2)。例如,利用人工神经网络自适应选择方法,以水质遥感和检测数据为特征,可实现非线性水质指标模型的构建和应用,为水体水质管理与数字规划提供必要的基础数据。融合神经网络、支持向量机、分类回归树等 AI 算法,可以对更为复杂的水环境水质变化及其地球生物化学过程进行集成模拟,为水体水质保护与恢复提供重要的模型工具。

风险物质检测与毒性评估。将 AI 与光谱分析技术进行结合,是时下的研究热点。近红外光谱可用于快速检测生化需氧量等水体水质指标,而耦合以最小二乘支持向量机为代表的 AI 算法可以提升近红外光谱预测水质变化的准确性,为水污染的定量评估提供快捷方案;将反向传播神经网络和 k 均值聚类算法应用于激光诱导击穿光谱分析,为高效、准确和低成本估算重金属等传统检测时间长、检测费用高的地表水水质必要指标提供了新的思路和方法。与此同时,国内外也在探索将 AI 应用于环境毒理学研究,这为新型污染物的毒性预测与风险评估提供了经济、高效的新手段。

水质预警与污染应急方案构建。随着原位监测传感技术和设备的快速发展,基于深度神经网络的 AI 技术在空间大数据分析中开始发挥重要的作用,这为优化水质监测布设方案、提高污染源解析能力、制定污染预警和应急防控体系等方面提供了有力的技术和决策支持。

水质安全保障技术研发

随着水处理标准的不断提升,新型水质净化功能材料的设计与应用、污染物去除机制解析与高效技术研发、污染物定向资源能源转化和调控成为水处理领域的研究热点。

新型水质净化功能材料的设计与应用。基于 AI 的材料基因组学技术得到了快速发展,为环境友好新型功能材料的设计和开发提供了高效途径。通过对材料开发过程的失败试验和历史数据进行反演学习,再结合目标污染物特征,对新材料的成分与特性进行计算模拟和优化,有望摒弃传统以试错为核心的材料研发范式,这将极大地促进水质净化新材料的产业化发展(图 3)。

污染物去除机制解析与高效技术研发。与健康密切相关的药物和个人护理品、内分泌干扰素、持久性有机物等微污染物在市政水处理系统中的迁移转化机理是发展高效水处理技术的关键和难点。随机森林、最小绝对值收敛和选择算子、前馈神经网络等 AI 算法的引入,非线性模拟与预测微污染物在水处理过程中的行为成为了可能,这为强化水处理技术提供了新方法。随着基于宏基因组学和代谢组学等分子方法的污水生物处理机理研究不断深入,如何从污水处理系统的微生物大数据中识别关键功能微生物,成为强化污水生物处理的核心难点。将 AI 技术与生物信息学结合,为水处理系统的信息挖掘和微观解析提供了重要机遇,为阐明污水生物处理机理开辟了新途径(图 4),但如何提高信息挖掘解析的准确性和可解释性仍是当前的主要难题。

污染物定向资源能源转化与调控。水污染控制的核心范式逐渐从污染物去除向资源化和能源化转变,而数字孪生等虚拟和增强现实的前沿 AI 技术将有望突破实时仿真同步调控水中污染物定向转移转化的技术难题,但仍有诸多关键技术难题有待突破。

  1  2  3  4  5  >  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇