智能家居常见的传感器有哪些有哪些特点
随着科技发展,5G时代的到来,智能家居,万物互联的概念已经深入到人们的日常生活中,智能门锁,智能家电,智能影音等都比较受到人们的关注。下面小编就和大家走进智能家居这一领域来了解下传感器的相关应用。
很多人一听说智能家居,就是App控制,窗帘、灯光控制。其实现在的智能家居可以做的非常炫酷,而且还非常的实用,当然这就需要专业人员的设计规划,定制实施。何为智能家居?
智能家居也称为智能住宅,国外称之为“SmartHome”是以住宅为载体,将安防监控、家电控制、灯光控制、背景音乐、语音声控为一体,通过综合布线、网络通信、安全防范、自动控制技和音视频等技术将家居生活有关的设备智能的联系起来集中管理,提供更具有便捷性、舒适性、安全性、节能性的家庭生活环境。给人们带来一个舒适高品质具有高安全的生活。
所谓智能之处,表现在拥有自动识别、自动调节以及自动控制的功能。简单的说就是它还可以通过手机进行远程操控。将与家居生活有关的设施集成统一起来,构建便利、舒适、享受、超前、安全、健康的居家环境。
而这些智能家居都离不开一个重要的配件,就是传感器。
传感技术的发展与应用,让物体有了触觉、味觉和嗅觉,让物体慢慢的活了起来。这一方面在智能家居体现的特别明显,智能家居系统由传感器、执行器、控制中枢、通信网络等部分组成,通过各种类型的传感器获取室内环境的各种数据,目前在家庭中使用比较多的传感器有一下几款传感器:
温度传感器
温度传感器在智能家居中可以保证室温的恒定,是智能家居中必不可少的组成部分,在运用中,温度传感器可以根据季节的变化或者用户的需求来调整温度。
在温度的测量中,通过温度传感器可以采集温度信息,在现代智能家居中,通常选择的温度传感器,需具有稳定性及性能强大的特点,在运用中,可以将数字信号转化成为电信号,通过计算机系统的控制,将温度的信息传递给计算机系统,继而通过中央控制体系传输给空调,实现智能家居的温度控制。
图像传感器
在智能家居中,图像传感器同样是重要的应用元件之一。主要是由于在现代建设中,需要通过监控设备来实现内部的监控以及住宅周边的监控,在传统的监控手段中,主要是通过摄像头来进行监控,而无法将信息传递给用户,一旦监控系统被破坏,将会导致用户承担较大的损失。而在智能家居系统中,通过PC端的监控,可以将信息发送给用户的手机或者电脑,实现远程监控,在在智能监控中,利用图像传感器,可以进行光电转换,其主要是由CCD和CMOS传感器组成,通过其可以制作数字摄像机,实现对智能家居的全面控制。
光电传感器
在传统的生活方式中,人们在运用水源、电源以及光源等情况时,均需要手动设置开关来完成,而在智能家居中,通过光电传感器,可以实现对智能家居的全面控制。利用光阻可以设计自动照明灯,通过红外线感应系统,可以实现对居家的便利化照明,不需要人为进行控制。另外,在光电传感器的运用中,通过红外线传感器可以实现对水龙头、温度计湿度等多种条件的控制,这样可以节约相应的资源,且会提升用户的享受。
空气传感器
空气传感器则可以为用户实时监测监控的环境,一旦超出安全指标即可触发家中的空气净化设备,净化空气,为家人营造健康的空气环境。空气传感器可嵌入各种与空气中悬浮颗粒物浓度相关的仪器仪表或环境改善设备,实时监测空气质量。
智能机器人视觉传感器的技术和应用
智能机器人视觉传感器的技术和应用时间:2018-12-1018:05:54来源:机器人库
导语:机器人成为最热门的话题之一,也是许多媒体一直关注的焦点,现在,很多人会说,机器人是我们的未来。一系列机器人进入制造业。机器人视觉传感器详解
一种新型的工业机器人已经走到行业的前沿,他们的主要特点是能够安全地协助人类工作。在网上有很多人谈论它们,但你认真了解过它吗?
在2008年,很多人爱它们只是处于好奇心。在2012年,机器人被视为时尚。但在2013年,一大批竞争对手开始了他们的机器人时代,并进入了人工智能战场。
机器人成为最热门的话题之一,也是许多媒体一直关注的焦点,现在,很多人会说,机器人是我们的未来。一系列机器人进入制造业。
关于机器人视觉传感器
传感技术是现金机器人的三大要素(感知、决策和动作)之一,工业机器人根据完成的任务不同,配置的传感器类型和规格也不同。通常根据用途的不同,机器人传感器可以分为两大类:用于检测机器人自身状态的内部传感器和用于检测机器人相关环境参数的外部传感器。
今天分享的内容是,机器人外部传感器中的—视觉传感器,也就是机器人的“眼镜”。
机器人有“眼睛”,这对于我们来说,是非常重要的。人类从外界获得的东西大多数是由眼镜得到的,人类视觉细胞的数量是人类听觉细胞数量的三千多倍,是皮肤感觉细胞的100多倍。如果要赋予机器人较高级的智能,机器人必须通过视觉系统更多的获取周围世界的信息。
例:机器人视觉的典型应用:
焊接机器人用视觉系统进行作业定位
视觉系统导引机器人进行喷涂作业
搬运机器人用视觉系统导引电磁吸盘抓取工件
图:机器人焊接
机器人的视觉必须能理解三维空间的信息,即机器人的视觉与文字识别或者图像识别是有区别的,需要进行三维图像的处理。
因为视觉传感器只能得到二维图像,从不同角度上看同一物体,得到的图像也不同;光源的位置不同,得到的图像的明暗程度与分布也不同。
为此,人们采取了很多措施来解决这个问题,并且为了减轻视觉系统的负担,尽可能地完善外部环境条件,加强视觉系统本身的功能和使用较好的方法进行信息处理。
1、视频摄像头
2、光电转换器件
(CCD传感器、MOS图像传感器)
3、PSD传感器
4、形状识别传感器
5、工业机器人视觉系统
(工业机器人视觉系统的基本原理、利用视觉识别抓取工件的工业机器人系统)
机器人的“眼睛”实际上“看不到”任何东西。只是机器人被嵌入了视觉传感器。能够扫描周围环境,判断是否有障碍物。遇到人类或障碍物的时候机器人能够减速或停止。
随着越来越多的机器人进入工厂车间,它的安全问题仍然是一个主要关注问题。机器人和安全相辅相成。你不能在没有减轻伤害风险的情况下进行人机协作。
如果您的机器人正在操纵锋利的对象,那么在没有采取保护性安全措施的情况下,其旁边有一个人是不安全的。另一种情况是机器人是否正在处理重物,如果物体掉落或以特定速度成为射弹,则会造成伤害。
为了让人们在这些机器人周围感到安全,我们需要了解机器人接下来要做什么。
低成本,自动化是真正的机器人。工厂通过添加机器人,使工厂能够以相同数量的人实现更高的产出,以最低的成本,达到最高的生产效率。
结合机器人与自主移动机器人,增强现实,可穿戴设备和其他先进技术,以配备智能,数字化工厂,你有一个娱乐的前进的自动化制造的未来。
未来,机器人将与人类团队携手合作,共同提高效率和生产力。
智能视觉传感器的技术和应用
视觉传感技术是传感技术七大类中的一个,视觉传感器是指:通过对摄像机拍摄到的图像进行图像处理,来计算对象物的特征量(面积、重心、长度、位置等),并输出数据和判断结果的传感器。
一、视觉传感器概述
视觉传感技术是传感技术七大类中的一个,视觉传感器是指:通过对摄像机拍摄到的图像进行图像处理,来计算对象物的特征量(面积、重心、长度、位置等),并输出数据和判断结果的传感器。
二、分类
1、3D视觉传感技术
3D视觉传感器具有广泛的用途,比如多媒体手机、网络摄像、数码相机、机器人视觉导航、汽车安全系统、生物医学像素分析、人机界面、虚拟现实、监控、工业检测、无线远距离传感、显微镜技术、天文观察、海洋自主导航、科学仪器等等。这些不同的应用均是基于3D视觉图像传感器技术。特别是3D影像技术在工业控制、汽车自主导航中具有急迫的应用。
2、智能视觉传感技术
智能视觉传感技术下的智能视觉传感器也称智能相机,是近年来机器视觉领域发展最快的一项新技术。智能相机是一个兼具图像采集、图像处理和信息传递功能的小型机器视觉系统,是一种嵌入式计算机视觉系统。它将图像传感器、数字处理器、通讯模块和其他外设集成到一个单一的相机内,由于这种一体化的设计,可降低系统的复杂度,并提高可靠性。同时系统尺寸大大缩小,拓宽了视觉技术的应用领域。
智能视觉传感器的易学、易用、易维护、安装方便,可在短期内构建起可靠而有效的视觉检测系统等优点使得这项技术得到飞速的发展。
三、视觉传感技术的实现基础
视觉传感器的图像采集单元主要由CCD/CMOS像机、光学系统、照明系统和图像采集卡组成,将光学影像转换成数字图像,传递给图像处理单元。通常使用的图像传感器件主要有CCD图像传感器和CMOS图像传感器两种。下面将介绍两种传感器的实现原理及优缺点。
四、视觉传感技术的应用
1、汽车车身视觉检测系统
车身成型是汽车制造的关键工序之一,对车身的各项指标要求严格,需对车身进行100%的检测。传统的车身检测方法是利用三坐标测量机,其操作复杂,速度慢,工期长,只能进行抽检。
通常,车身的关键尺寸主要是挡风玻璃尺寸、车门安装处棱边位置、定位孔位置等。因此视觉传感器分布于这些位置附近,测量其相应的棱边、孔、表面的空间位置尺寸。在生产线上设计测量工位,车身定位后,置于一框架内,框架由纵横分布的金属柱、杆构成,可根据需要在框架上灵活安装视觉传感器。根据测量点的数量可安装相应数量的视觉传感器,(通常情况下每个视觉传感器测量一个被测点),根据不同形式的传感器包括双目立体视觉传感器、轮廓传感器等多种类型。
测量系统工作过程为:由生产线运送车身到测量工位进行准确定位,然后传感器按要求顺序开始工作,计算机采集检测点图像并进行处理,计算出被测点的空间三维坐标,计算值与标准值比对,得出检测结果,并将车身送出测量工位。
2、钢管直线度、截面尺寸在线视觉测量系统
在工业生产中,无缝钢管是一类重要的工业产品,而它的质量参数则是制造的重要数据,其中钢管的直线度及截面积是主要的几何参数,是控制无缝钢管制造质量的关键,但由于以下原因使得参数的测量成为难题:(1)、无缝钢管采取非接触式测量,且制造现场环境恶劣;(2)、无缝钢管的空间尺寸大,这也要求检测系统具备很大的测量空间。视觉传感技术的出现解决了上述问题,视觉传感技术采用的是非接触式测量且测量范围大。
测量系统由多个结构光传感器组成,传感器上结构光投射器投射的光平面和被测钢管相交,得到钢管截面圆周上的部分圆弧,传感器测量部分圆弧在空间中的位置。系统中每一个传感器实现一个截面上部分圆弧的测量,通过适当的数学方法,由圆弧拟合得到截面尺寸和截面圆心的空间位置,由截面圆心分布的空间包络,得到直线度参数。测量系统在计算机的控制下,可在数秒内完成测量,满足实时性要求。
3、三维形貌视觉测量
在三维形貌数字化测量技术是逆向工程和产品数字化设计、管理及制造的基础支撑技术。它所实现三维形貌数字化测量的机理是将视觉非接触、快速测量和最新的高分辨力数字成像技术相结合。由于所测量的物体多是大型、具有复杂表面的物体,测量通常分为局部三维信息获取和整体拼接两部分,先利用视觉扫描传感器对被测形貌各个局部区域进行测量,再采用拼接技术将各部分形貌进行拼接最终得到完整图像。
这项传感器的视觉扫描测头采用局域双目立体视觉测量原理设计。形貌整体拼接实质上是将所采集到的数据放到公共坐标上,这样就能得到整体的数据描述。通过高分辨率数码相机从测量空间的上方以不同的角度和位置对被测量进行数据收集,运用光束定向交汇平差原理得到控制点空间坐标并建立全局坐标系,最后通过各个坐标系进行关联、转换,完成数据拼接。
五、总结
视觉源于生物界获取外部环境信息的一种方式,是自然界生物获取信息的最有效手段,是生物智能的核心组成之一。人类80%的信息都是依靠视觉获取的,基于这一启发研究人员开始为机械安装“眼睛”使得机器跟人类一样通过“看”获取外界信息,由此诞生了一门新兴学科——计算机视觉,人们通过对生物视觉系统的研究从而模仿制作机器视觉系统,尽管与人类视觉系统相差很大,但是这对传感器技术而言是突破性的进步。视觉传感器技术的实质就是图像处理技术,通过截取物体表面的信号绘制成图像从而呈现在研究人员的面前。视觉传感技术的出现解决了其他传感器因场地大小限制或检测设备庞大而无法操作的问题,由此广受工业制造界的欢迎。
标签:
分享到:上一篇:五大元器件的等效电路知识详解
下一篇:自带风扇冷却的永磁电机热计...
中国传动网版权与免责声明:凡本网注明[来源:中国传动网]的所有文字、图片、音视和视频文件,版权均为中国传动网(www.chuandong.com)独家所有。如需转载请与0755-82949061联系。任何媒体、网站或个人转载使用时须注明来源“中国传动网”,违反者本网将追究其法律责任。
本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。
相关资讯
机器人中的超声波传感器助力智能机器人近距离避障...智能机器人视觉传感器的技术原理随着用餐习惯的改变,智能机器人厨房技术升温智能机器人按智能程度分类可分为哪几种?机器人还能这么分类?智能机器人分类介绍!智能机器人按照用途可分为哪几种类型?手术机器人的核心技术
手术机器人医疗器械作为高端智能诊疗装备,为满足不同的术部、术式和多样化临床需求,主要囊括了如下核心科学技术。
一、手术机器人的机构设计
1、多孔腔镜手术机器人的设计
在多孔腔镜手术中,“从动端手术机器人”往往由“体外机械臂”和“灵巧手术工具”构成:若干直杆状的手术工具经过不同的皮肤切口伸入并达到病灶,通过体外机械臂的摆动使得手术工具绕着入腹切口在病人体内运动;手术工具的末端有灵巧的腕状结构以提供运动灵活性。
为避免对皮肤的撕扯,这些手术工具需要绕着入腹点做“远心运动”。实现“远心运动”的体外机械臂具体有被动约束、机械约束和协同约束这三类实现途径。被动约束是指体外机械臂的远心机构为欠驱动系统,手术工具可被动地适应皮肤切口,典型代表有美国的Zeus系统和天津大学团队的妙手系统等。
这类机器人虽然可有效防止切口处皮肤的撕扯,但控制精度可能被术中病患腹腔壁切口的随气腹压力变化或呼吸运动的变化而受到影响。机械约束一般通过等效的平行四边形机构或者并联机构构造空间的不动点,例如daVinciSi/Xi系统和韩国Meere公司的Revo-I系统等。该种约束的可靠性高,但是结构较复杂,占用空间较大。以Medtronic和德国宇航中心共同研发的MiroSurge系统,英国CambridgeMedicalRobotics公司的Versius系统等为代表的协同控制则是通过算法层面协同控制体外机械臂的各个关节以满足不撕扯皮肤切口的约束要求。
灵巧腕状结构的设计主要有串联关节、并联关节和连续体关节三类。其代表性设计分别有daVinci系统的EndoWrist串联关节设计、韩国科学技术研究院的并联关节设计和多伦多大学或上海交通大学团队的连续体关节设计等。
2、单孔腔镜手术机器人的设计
在单孔腔镜手术中,视觉模块和手术工具均从同一个创口伸入病人体腔内。由于创伤面更小,为了实现类似于多孔腔镜手术机器人的运动能力,单孔手术器械的布置难度更高。手术工具按照驱动类型不同可分为电机内置型、连杆驱动型、钢丝驱动型和连续体机构型四种。
美国VirtualIncision公司的RASD系统等采用电机内置的驱动方式,将伺服电机内嵌在机器人的手术工具臂体中。虽然这类设计可以实现模块化的关节布置,但是电机和减速机构会造成较大的皮肤切口和难以消毒的设计隐患。以早稻田大学团队的SPS系统等为代表的连杆驱动型单孔腔镜机器人则会受限于机构尺寸难以缩小,以及空间连杆固有的运动干涉问题。
以daVinciSP系统为代表的钢丝驱动型设计有较多系统采纳:十余股钢丝绳穿过手术工具内部的小孔牵拉实现关节的弯转运动,但带来钢丝绳疲劳磨损的问题。采用超弹性镍钛合金细杆协同推拉,以实现手术工具柔顺运动的连续体机构驱动方式,凭借其独特的模块化紧凑结构的特点也逐渐被学界和业界所接受。采用该驱动方式的北京术锐的模块化腔镜手术机器人系统目前已拥有较成熟有效的实现方案。
3、经自然腔道腔镜手术机器人的设计
这类手术机器人需要通过狭长病人自然腔道到达病灶处,因此对手术工具的外径尺寸、负载能力、末端灵巧性都提出了极高要求,目前距离产业化尚存距离。其驱动方案类似地,包含电机内置、钢丝驱动和连续体机构三类。
二、手术机器人的传感设计
1、手术工具的力感知
手术机器人的力感知可作为力反馈的依据以提升手术的安全性。手术中的力感知包括受力感知和触觉柔顺感知两个方面,具有外体感知和本体感知两种途径。外体感知通常在手术工具的末端集成基于电阻、光纤等的力学传感器;而本体感知则在手术机器人位于病人体外的驱动关节处安装传感器,通过力学模型推导手术工具末端所受的力学信息。虽然本体感知的精度会略逊于外体感知,但减小了手术工具的机构复杂度、降低了其消毒和制造的难度。
2、三维重建与图像识别
三维重建是通过内窥镜影像或者结构光等手段在手术过程中生成组织和器官表面的轮廓,为医生提供术场信息。由于使用结构光涉及额外的术场成像设备,当前的热点较多集中在基于内窥镜影像的SLAM技术:通过返回的实时视野图像,重建术场环境并同时更新内窥镜镜头的位姿。
视野中的手术器械和组织经过图像识别和切割,可有助于医生对于术部环境的感知。手术器械可通过其颜色、几何特征、纹理特征或者额外附着的标记物作出识别。然而体内器官和组织往往不具有明显的区别性特征,因而可以通过注射荧光显影剂,并用近红外光照射,获得荧光影像;也有研究采用随机森林、支持向量机、卷积网络等基于人工智能的方法对组织进行辨识。
3、定位导航技术
在骨科和神外手术中,通过术前和术中获取病灶基准位置可开展智能规划切割和植入的路径,有利于手术标准化展开、避免术中多余的X光辐射等。当前的定位技术依据原理可分为机械型、超声型、光学型和电磁型。其中诸如定位框架的机械定位技术较成熟但对病人的侵入性较大;超声型有着稳定性和精度差的缺陷;光学型虽使用灵巧但易受遮挡;电磁型则受限于工作区域易受电磁干扰的劣势。
三、手术机器人的控制模式
1、主从遥操作范式
为满足医生的操作需求、改善手术机器人的工作空间和灵巧度,从动端手术机器人与主控端的力位交互设备往往具有不同的机械拓扑结构,也因此需要额外建立关节配置空间和工作空间的映射。在工作空间内,手术机器人的目标位置和姿态控制指令的下发可采用增量式或绝对式控制。对机器人从工作空间到关节空间的求解算法则可归纳为解析算法、迭代算法、基于图形学的启发式算法和机器学习类人工智能算法等。
2、主控端力位交互设备
力位交互设备可以将采集到的医生手部位姿信息下发给从动端,并向操作医生输出一定的力旋量,使其拥有仿佛在亲手操作手术的“透明化”感觉。在空间中,位置和姿态信息,与力和力矩信息均在六维空间内表达,因此根据维度的不同全球众多科研机构和公司开发了多种产品。目前较为成熟的通用化产品大多出自ForceDimension和3DSystems公司。
3、协同控制
有研究指出基于算法的协同控制可以有效提供位置和力学信息有助于提高手术的安全性、精准度和手术效率。目前主要有两类协同控制:在指引型控制中,算法辅助医生操控手术工具沿着设定的路径或者组织表面运动;在禁止型控制中,手术工具被阻隔在给定的区域外,以避免对人体组织的破坏。目前协同控制已经被用来改善诸如递针、缝合、打结等基本操作。