博舍

崇皇街道15天完成西安人工智能科学城一期项目征迁任务 人工智能科学城

崇皇街道15天完成西安人工智能科学城一期项目征迁任务

为争取广大群众的支持理解,实现阳光、和谐拆迁安置,街办采取组装宣传车、悬挂横幅、印发宣传手册、张贴倒计时海报、微信群发消息等各种方式,广泛深入宣传拆迁安置政策。参与征迁的街村组党员、干部挨家挨户走访,不厌其烦入户宣传,坚持做到政策依据公开、工作流程公开、奖励政策公开。无论是工作日还是节假日,无论是晨光熹微还是满天星光,他们都奔忙在拆迁一线,依据补偿方案帮群众算好经济账、发展账,给群众宣传项目建成后给崇皇、全区带来的利税、就业、商业圈建设等各方面效益,最大限度争取群众支持项目建设、支持高陵发展。同时,地毯式摸排收集村民家庭状况、矛盾困难、历史遗留问题等情况,“一户一策”研判解决实际问题,每天工作到凌晨1点左右是家常便饭。群众发自内心地说:“干部没黑没白地干,还不是为了群众?这么好的项目,再不支持尽快建设,咱都对不住人家”。各级领导、干部凝心聚力的工作、群众的理解支持、淳朴的民风,群策群力共同交出了一份组织认可、群众高兴、企业满意的“民生答卷”。据不完全统计,本次拆迁共张贴宣传横幅100余条、海报100余张,印发宣传手册近600余份,组装宣传车5辆,每天在各组巡回宣传。广泛深入、扎实细致的宣传动员,以责任赢得信任、以感情争取支持,有力促进了拆迁补偿协议签订工作。

03

坚持党建引领,工作作风“实”

3月初,街道党工委及时成立了项目搬迁安置指挥部临时党支部,组建党员宣传队、拆迁先锋队,引导党员带头签字、带头搬迁、带头交钥匙,让党旗高高飘扬在重大项目征迁一线。以“宁出局部百倍力,不添全局一丝乱”的理念,街村组干部和村民代表,实行“五加二”“白加黑”工作法,一线挂图作战,一线破解难题,一线聚力攻坚。坚持每天分层次召开3次会议,分析研判当日情况,安排次日工作任务。指挥部结合实际先后3次调整工作方案,保证了工作顺利推进。在这次征迁工作中,街办许多工作经验丰富的年轻党员干部主动请战,积极作为,涌现了一批政治坚定、勇于争先、敢于担当、善打硬仗、务实廉洁的好党员、好干部。街道党政主要领导吃住、工作在一线,每天只休息4、5个小时。纪检监察干部赵涛任劳任怨,工作起来经常废寝忘食,私家车被剐蹭了也顾不上修理;包村组长于锋、王凯入户给群众做思想工作办法多、签协议数量多;包绳刘村的徐胜利、全鑫家里老人和孩子病了也顾不上回去照顾,家里电路出现故障了就委托朋友去处理,家人不理解抱怨时,他们解释说:“咱是党员,工作需要时就要能站出来、顶上去、豁出去”。像这样的感人事迹举不胜举,党员干部们舍小家、顾大家的务实作风得到了群众的普遍好评。针对老年人、精神病患者等特殊人群租房难的问题,街道积极与区住建局对接,及时为群众提供全区所有可租赁房源信息,同时引入优质房屋租赁中介公司现场办公,创造了“上午签协议、下午搬家、晚上拆除”的“崇皇速度”。返回搜狐,查看更多

人工智能

概述什么是人工智能?人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它试图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样的思考,甚至超过人的智能。

第一阶段:Python

利用Python解析数据速度,效率方面比较轻量级i.轻量级指的是部署到服务器里面,可以提高服务器访问并发ii.轻量级指的是业务与业务之间的逻辑性很强,兼容性很强,降低耦合度iii.轻量级指的是业务与数据之间的一种关系体现很轻,简单说:获取数据集的方式很快,多样化

Java语言也可以实现人工智能的数据操作—不建议—重量级i.重量级的操作不适合’数据集’的采集操作ii.重量级操作不适合数据集的清理操作iii.重量级的业务与数据之间很难进行数据解析操作

人工智能的历史

1956年夏天:达特茅斯会议,提出“人工智能“20世纪60年代:感知机20世纪70年代:专家系统、知识工程20世纪80年代:日本第五代机20世纪90年代:统计机器学习2006年:深度学习2012年:卷积神经网络…人工智能的分类弱人工智能ArtificialNarrowIntelligence(ANI):弱人工智能是擅长于单个方面的人工智能。强人工智能ArtificialGeneralIntelligence(AGI):人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。超人工智能ArtificialSuperIntelligence(ASI):知名人工智能思想家NickBostrom把超级智能定义为”在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能“。人工智能的机器学习

机器学习需要’思考’

机器学习是一门从数据中研究算法的科学学科‘数据’---->>‘算法’如何实现’数据’到’算法’的过程?数据采集(Python)>>数据分析(Python)>>数据挖掘(Hadoop)>>模型建立(算法)>>预测未来

机器学习理性认识

机器学习的算法公式思想

数据1:x轴x1,x2,x3…xn数据2:y轴y1,y2,y3…yn目标值:x---->y误差趋近于零的时候就是目标值,误差最小->数据输出

结果公式:{(x1,y1),(x2,y2),(x3,y3)…(xn,yn)}g:x->y备注:g表示最终的公式

导论结果:其实’数据集’就是一种算法的实现

算法(T):根据业务需要和数据特征选择的相关算法,也就是一个数学公式模型(E):基于数据和算法构件出来的模型评估/测试§:对模型进行评估的策略

训练数据

:"训练"数据训练指的是是:一种学习行为----转化为:“经验”-----通过经验采集的数据才是训练数据!训练数据是存在很大的不合理性!并不能满足机器的学习使用!

数据集是训练数据吗?数据集可以让机器学习使用!

机器学习概念

拟合构建的算法符合给定数据的特征x(i):表示第i个样本的x向量xi:x向量的第i维度的值

鲁棒性也就是健壮性、稳健性、强健性,是系统的健壮性;当存在异常数据的时候,算法也会拟合数据

过拟合算法太符合样本数据的特征,对于实际生产中的数据特征无法拟合,目标数据和预测数据差距太大!

欠拟合算法不太符合样本的数据特征

人工智能的3大框架

sciket-learn(Python)基于Python语言开发的人工智能—大量使用(效率最高)http://scikit-learn.org/stable/

Mahout(Hadoop生态圈基于MapReduce)基于大数据Hadoop的人工智能—不建议(大数据直接与AI结合)—成本高http://mahout.apache.org/

SparkMLlib基于SparkMLlib处理数据解析数据集—处理数据集的速度高于hedoophttp://spark.apache.org/

OpenStack云机房很高端,但对技术要求过高

机器学习之商业个性化推荐:个性化指的是根据各种因素来改变用户体验和呈现给用户内容,这些因素可能包含用户的行为数据和外部因素;推荐常指系统向用户呈现一个用户可能感兴趣的物品列表。精准营销:从用户群众中找出特定的要求的营销对象。客户细分:试图将用户群体分为不同的组,根据给定的用户特征进行客户分组。预测建模及分析:根据已有的数据进行建模,并使用得到的模型预测未机器学习、数据分析、数据挖掘区别与联系

数据分析:数据分析是指用适当的统计分析方法对收集的大量数据进行分析,并提取有用的信息,以及形成结论,从而对数据进行详细的研究和概括过程。在实际工作中,数据分析可帮助人们做出判断;数据分析一般而言可以分为统计分析、探索性数据分析和验证性数据分析三大类。

数据挖掘:一般指从大量的数据中通过算法搜索隐藏于其中的信息的过程。通常通过统计、检索、机器学习、模式匹配等诸多方法来实现这个过程。

机器学习:是数据分析和数据挖掘的一种比较常用、比较好的手段。

机器学习分类有监督学习

用已知某种或某些特性的样本作为训练集,以建立一个数学模型,再用已建立的模型来预测未知样本,此种方法被称为有监督学习,是最常用的一种机器学习方法。是从标签化训练数据集中推断出模型的机器学习任务。

重点算法判别式模型(DiscriminativeModel):直接对条件概率p(y|x)进行建模,常见判别模型有:线性回归、决策树、支持向量机SVM、k近邻、神经网络等;

生成式模型(GenerativeModel):对联合分布概率p(x,y)进行建模,常见生成式模型有:隐马尔可夫模型HMM、朴素贝叶斯模型、高斯混合模型GMM、LDA等;

区别:

生成式模型更普适;判别式模型更直接,目标性更强生成式模型关注数据是如何产生的,寻找的是数据分布模型;判别式模型关注的数据的差异性,寻找的是分类面由生成式模型可以产生判别式模型,但是由判别式模式没法形成生成式模型无监督学习

与监督学习相比,无监督学习的训练集中没有人为的标注的结果,在非监督的学习过程中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。

无监督学习试图学习或者提取数据背后的数据特征,或者从数据中抽取出重要的特征信息,常见的算法有聚类、降维、文本处理(特征抽取)等。

无监督学习一般是作为有监督学习的前期数据处理,功能是从原始数据中抽取出必要的标签信息

半监督学习(SSL)

考虑如何利用少量的’标注样本’和大量的’未标注样本’进行训练和分类的问题,是有监督学习和无监督学习的结合

主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。半监督学习对于减少标注代价,提高学习机器性能具有非常重大的实际意义。

SSL的成立依赖于模型假设,主要分为三大类:平滑假设、聚类假设、流行假设;其中流行假设更具有普遍性。

SSL类型的算法主要分为四大类:半监督分类、半监督回归、半监督聚类、半监督降维。

缺点:抗干扰能力弱,仅适合于实验室环境,其现实意义还没有体现出来;未来的发展主要是聚焦于新模型假设的产生

机器学习分类2分类通过分类模型,将样本数据集中的样本映射到某个给定的类别中聚类通过聚类模型,将样本数据集中的样本分为几个类别,属于同一类别的样本相似性比较大回归反映了样本数据集中样本的属性值的特性,通过函数表达样本映射的关系来发现属性值之间的依赖关系关联规则获取隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现频率机器学习算法算法名称算法描述C4.5分类决策树算法,决策树的核心算法,ID3算法的改进算法。CART分类与回归树(ClassificationandRegressionTrees)kNNK近邻分类算法;如果一个样本在特征空间中的k个最相似的样本中大多数属于某一个类别,那么该样本也属于该类别NaiveBayes贝叶斯分类模型;该模型比较适合属性相关性比较小的时候,如果属性相关性比较大的时候,决策树模型比贝叶斯分类模型效果好(原因:贝叶斯模型假设属性之间是互不影响的)SVM支持向量机,一种有监督学习的统计学习方法,广泛应用于统计分类和回归分析中。EM最大期望算法,常用于机器学习和计算机视觉中的数据集聚领域Apriori关联规则挖掘算法K-Means聚类算法,功能是将n个对象根据属性特征分为k个分割(k

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇