博舍

人机混合智能的哲学思考 人机混合智能技术体系

人机混合智能的哲学思考

一、引言

    人机融合智能是一种新型智能形式,它不同于人的智能、也不同于人工智能,是一种跨物种越属性结合的下一代智能科学体系。如果说真就是Being,善就是Should,美就是Being+Should的融合;假设机就是Being,人就是Should,那么人机就是Being+Should的融合。同时,人机融合智能也是东西方文明的共同结晶体现。

    一般而言,东方文明对于智能的追求永远是“反求诸己”,企图打破人自身思维的界限而达到超越性的智慧;西方则是追求借助外力计算实现超越,计算即要求有穷,或者至少极限存在being,函数收敛。而针对无穷发散式的问题,也就是should的问题,人工智能很难跨出聚合这一步,而人机融合智能则能跨出这一步:人的意向性可以灵活自如地帮助人机协调各种智能问题中的矛盾和悖论。

    表面上,人机融合智能问题是一个现代科学技术问题,同时也是一个古老的伦理问题。伦,有四种解释:1辈,类。2人与人之间的关系。3条理,次序。4姓;伦理,就是指的就是人与人以及人与自然的关系和处理这些关系的规则。人们往往把伦理看作是对道德标准的寻求。道德是后天养成的合乎行为规范和准则的东西。它是社会生活环境中的意识形态之一,它是做人做事和成人成事的底线。它要求我们且帮助我们,并在生活中自觉自我地约束着我们。假如没有道德或失去道德,人类就很难是美好的,甚至就是一个动物世界,人们也就无理性无智慧可言。伦理道德的最现实作用就是使人对事物产生价值观,而这价值观恰恰是产生意向(should)和存在(being)的主要源泉,意向性是意识的基础、存在是规律的反映,人类智能的根本就在于此::“德化情,情生意,意恒动。”“意恒动,识中择念,动机出矣。”

    传统逻辑学规范的对象是一种可自控的推理活动。作为对于逻辑学奠基于伦理学之上的一个基本论证,皮尔士强调:“就其一般特征来看,推理现象类似于那些道德活动的现象。因为,推理本质上乃处于自控状态下的思想,正如道德活动乃处于自控状态下的活动一样。实际上,推理是受控活动的一种,因此必然带有受控活动的本质特征。虽然由于教士专门负责让你们记住,推理现象并非像道德现象那样为你们所熟知,但是,如果你们关注推理现象,你们可以很容易看到,一个得出理性结论的人不仅认为它是真的,而且认为每一类似情况下的推理同样正确。如果他没有这样认为,他的推断就不能称为推理。它不过是他心中出现的一个想法,他无法抗拒地认为它是真的。而由于没有经受任何检查或控制,它并不是被有意认可的,并不能称为推理。”这里核心的论证结构是:任何可判定好坏的行为都必须是可自控的,逻辑学以区分推理好坏为主要任务,所以作为逻辑规范对象的推理必须是可自控的活动。作为人造的机器、机制而言,其本质必然是可自控的活动结果,而人的则未必完全是逻辑自控的,人机融合智能更不是逻辑的自控推理活动。

二、人机融合智能的思考

    人类价值观的起源是伦理学,机器的起源是人类(它们的上帝)。现实中,人类的伦理道德困境就不少,而人类给机器人“装”进去价值,恐怕会有更多的伦理范式之间的对冲矛盾产生吧?!无论如何,从中不难看出,人机融合的未来必将会荆棘密布、困难重重。

    伦理可以规范出道理,道理可以演化出物理,物理可以抽象出数理,数理可以泛化于管理、生理、心理……。正如生活中所常见的那样,一个自然数据一接触到一种自然数据或社会数据性质就会发生较大变化,尤其是那些在临界值/区的数据/数值变化,直接导致了价值的出现和信息的产生。(自然、社会、真实、虚拟)隐显混合信息/知识构成的概念“能指、所指”往往呈现出生态多样性,在理论中变得越发生动活泼跳跃。人机之间的理论、概念、知识、信息、数据之间是弥散膨胀关系,反之是聚合压缩关系,但为了不失真,它们相互之间的转换效率都需要某种方法来衡量,这些表征就是我们要寻找的关键和突破口。人机融合后,整个系统的输入、处理、输出会发生不少变化:首先通情达理(这里的“理”包括伦理和道理)就是should到being的信数(人的信息与机的数据可以通过信数这个新中介形式进行融合,这个中介信数是由一个矢量+一个标量或一组矢量+多组标量构成的矢标量(还是矢量)值,通过信数这个矢标量值进行人机融合关系程度优良好坏的初步判定,即输入阶段的评价指标。),即通过人的价值取向有选择地获取数据的过程,在这个输入过程中不但是客观数据与主观信息的融合,还应包括人的先验知识和条件;其次,在人机信息/数据融合处理过程中,人的非结构化信息架构(如自然语言)会渐变为结构化一些,而机的结构化数据据语法就会非结构化一些,在这种半结构化的情境中,不但要使用基于公理的推理,还要兼顾结合非公理性推理,使得整个推理过程更加缜密合理;最后,在决策输出阶段,人常常是由脑中若干记忆碎片,与五感接收到的信息,综合在一起,跳过逻辑层次,直接将这些信息中和的结果,反射到思维之中,形成所谓的“直觉”,其结果的准确程度,在很大方面取决于一个人的综合判断能力,而机器则是通过计算获得的结果--“间觉”进行间接评价,这种把直觉与“间觉”相结合的独特决策过程就是人机融合智能输出的一大特点。概而扩之,人机融合的关键应包括:一多与灵活弥聚的表征、公理与非公理混合推理、直觉与“间觉”交融的决策。

 人的感觉常常是嵌套混合贯通联合的,视觉里包含着听觉触觉嗅觉和味觉,机器的信号采集/数据输入则是单纯唯一独立分离的,各种通道模态之间没有融合交叉。人与机的感觉秩序大相径庭,刺激与数据、信息与信号差异太大。对人而言,未感觉到的刺激往往被隐藏在感觉到时刺激里,进而形成无意识感觉或下意识感觉。不难相信,这种联觉或迁移觉在文字、词语中也有着相似的机理。机器的这种能力至今尚未被开发出来,这或许是人机融合智能方面中的一个瓶颈吧!如何打破“人擅计机长算”的基本架构,数据一多分有全息表征的输入至关重要,这里面不仅有显性的个别数值体现,还有默会的众多关系作用。人的看里包含了大量的其他感觉到的东西,如听觉、触觉、嗅觉、味觉,这些联觉都潜在在视觉里,机器的看没有联觉、统觉,机器听觉等莫不如此……另外,情境中每个东西都有众多属性和关系,当前的打标就是九牛一毛,往往打标后挂一漏十白白损失了大量的信息,所以现有的“人工”智能中数据标注工作值得商榷。深入下去,人对这类复合信息的加工也应该是复合并行的处理:既有逻辑清晰地推理过程,可谓之达理,更有感性丰富地动情发展,可谓之通情;既有基于公理地显性信息的分析,也有基于非公理地隐含信息的综合,慢慢形成显、隐理解的共存,进而演化为显、隐意向性,为下一步的规划决策做好准备。在完成情境任务目标的价值驱动下,显性的意向性可以变成理性决策,隐性的意向性可以演化成直觉决策。

 在传统的人工智能研究中,联接主义的代表形式是人工神经网络,主要处理数据;行为主义的代表形式是强化学习方法,主要处理信息(奖惩后有价值的数据);符号主义的代表形式是知识图谱和专家系统,主要处理知识和推理(有限的知识及推理);三者有递进的味道,但距离人擅长的概念产生和理论建立相距甚远,尤其是在情感化表征、非公理性推理和直觉决策等方面机器更是望尘莫及!另外,机器学习中的反馈、迭代的生硬艰涩滞后与人的相比也是比较低级,这是因为人的态势感知能力不但来自科学技术还源于社会学、史学、哲学、文学、艺术等多方面的素养与思维技能,进而产生价值取向(态势感知的基本预设是:人可以发现未来的动向并影响它的进程)。机器的态势感知做不到,所以机器暂时还是单一领域的擅长者(如围棋、国际象棋等)。一般而言,机器在定义域(人为规则)里比人存储量大且准确、数据处理快,人在非定义域(自然情境)里比机智灵活且深刻、信息融合好。人的优势是划圈(划分领域/定义域),机的优势是画圆(精确执行),人机融合的优势则是既能划好圈又能画团圆(可跨域实现目标),正可谓:人心所想,机器所为。当前的人机融合产品还是共性的(谁都可以用,如手机、电脑),个性化服务的人机智能融合还未真正出现,但已有原始级别的系统悄悄暂露头角(如个人辅助决策系统等)。

    学习,对人而言最重要的是忽略那些非关键的数据、忘记那些不重要的信息,从而在诸多事物及其之间发生的各种关系~事实中游刃有余地特征相关、关联存在、变化应该、统计概念、概率规则、把握因果,可惜的是,目前的机器学习不会忽略不懂忘记,人这种过滤的机理与价值取向判断有关,弱类似于决策机理,机器没有价值体系。从透视主义的角度来看,人的认知存在两类选择性透视,一是生理功能上的,如对可见光的感受;二是观念上的,如情境、理论和价值预设。生理功能上的意思就是说我们选择认识什么不认识什么取决于生理感受与反映乃至内在机制;观念上是指各种预设使人在认识中会放大、虚构和过滤。人的价值取向相应可分为生理性和社会性,两者都包含个性化与共性成分,并在不同的情境组合中转换、释放出来,形成风格各异的认知特点和规律。迄今为止,这些价值体系尚未赋予没有个性的机器们。人类意向性的背后就是价值取向,即价值观伦理性(伦就是类和次序),如何让形式化(数据化)的机器产生价值取向就是让它产生意向性,即形式化的意向性,可以有道德有伦理的机器或许可以由此实现,产生不了有价值取向的机器,这一切都难以起始。事实上如何产生有价值倾向的机器,就是人的伦理道德像理性逻辑一样可描述化程序化问题,即伦理如何变成道理再变成公理原理的进程。此外,人的深度学习也不同于机器的深度学习,人的深度学习是学校教育与社会教育的一致,在于理论与实践的统一,在于矛盾和悖论的协同……是一种内外共鸣同情的学与习;而机器的深度学习源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构,深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。两种学习的机制根本不同:一个经过思考和实践,一个就是仿真和模拟。

   为什么人类倾向于用概念、关系和属性做解释?这是因为任何解释都是在认知基本框架(常识)下进行的。人类认识世界理解事物的过程,其实就是在用概念、属性和关系去认知世界的过程。概念、属性、关系是理解和认知的基石,机器不能把不同性质的东西联系起来,人却可以相关表面上无关的事物。为什么“整体不同于其部件的总和”?因为构成整体的部件(属性)们产生了关系,有内在的也有外在的,语义的进化也许就是新关系的形成,知识的产生也是各种各样的新关系被发现的过程,关系有单向性(不是双向的)和依附性,如何建立起人机之间的双向关系至关重要,这也是一个突破口和切入点。其中,构造与功能的关系、特征属性与语义向量关系是当下科研的热点和难点。

    为什么知识图谱和专家系统在实际应用中漏洞百出、问题层出不穷?其中最重要的原因是关系的梳理没有到位。其中对于主观参数和客观参数的不匹配不协同就是一个重要问题。正如维纳对智能控制的定义:“设有两个状态变量,其中一个是能由我们进行调节的,而另一个则不能控制。这时我们面临的问题是如何根据那个不可控制变量从过去到现在的信息来适当地确定可以调节的变量的最优值,以实现对于我们最为合适、最有利的状态。”如一个认知模型如何处理突出值、价值观、频率性、可信度等主客观融合特性,也许是评判其好坏的主要依据吧。早年Fechner在创立心理物理学时,提出过外部的心理物理学和内部的心理物理学等概念。外部物理世界各种物理刺激作用于人的感官,引起人的内部物理世界的活动,即脑的活动,从而产生内部心理世界的感觉体验。Fechner认为人的感觉过程既涉及外部物理世界的物理刺激,又涉及内部物理世界的脑活动过程,还有内部心理世界的感觉体验。他认为外部的心理物理学研究外部物理刺激强度和内部心理世界感觉体验强度之间的关系,而内部的心理物理学则研究内部物理世界即脑活动强度和内部心理世界感觉体验强度之间的关系。高级意识是什么呢,有人认为高级意识就是大量的基础意识的集成,把大量不同种类的基础意识有机地集成到一起,这种集成应该具有穿越性,能够把“无关”事物/事实有指向地相关起来,穿越比集成更迅捷。目前看来,单纯人的智慧在单个领域落后于人工智能已成为现实,对跨领域超级智能的期待仍无依无据,但是人机融合智能则可以更快更好更灵活地同化外来信息和顺应外部变化,是有机与无机的跨界混搭,是记忆与存储、算计与计算、直觉与间觉、自主与它主、慧与智的弥聚,也许这中融合智能正是未来的方向。

    人机融合智能的一个核心问题是介入问题,这也是一个体验问题,即人与机相互之间何时何处以何种方式(或平滑或迅速)介入的问题,尤其是在歧义点或关键阈期间介入的反应时、准确率。例如,交互中机器出现的变形了的非自主“主观”对人机融合很重要,尤其是在特定定义域(如围棋)中,可以改变人的习惯和偏好,甚至是世界观。再如,在融合时彼此之间的接受、容忍、信任、匹配、调度、切换、说服、熟练程度,以及如何训练出个性化的伙伴关系等都是具体亟待解决的问题。例如未来的人机说服技术,就需要人机之间的通情达理,因势利导。由于人机融合在细节层面和人人之间的合作几乎同样复杂,或者说是有一些另类的复杂问题。因而可以认为,从技术角度讲,人机融合智能绝不仅是一个数学仿真建模问题,还应是一个实验统计体验拟合的问题。

    一般来讲,对于一项技术的理解要从抽象的角度着手,抽象的角度越高,适应范围越广,用一层一层的抽象的方法去理解事物的本质,就能从思想上突破技术的局限性。比如一个简单的问题:计算机是什么?计算机的本质就是一个可编程的、用于计算的机器。任何问题只要能转换成计算问题,那计算机就能解决,如果不是计算问题,那计算机就解决不了。人处理的外部客观事物属性/关系本身就包含多重意义,再加上人本身的主观认知也丰富多彩,因而复杂性是不可避免的。相比之下,机器的数据分析倒是相对自然简单一些。信息的输入、处理、输出过程对人而言都是双向的,如“看想看的”、“听想听的”就是眼耳与大脑的双向流动,而弹奏想弹的曲子则是手脑之间的双向作用;数据的处理过程则是机器的单向使然,人为的反馈前馈仍难以掩盖其无机性。罗素认为,我们所说的每个事物都只由我们拥有的直观知识和理解的事物的说法(也许是合成的)构成——知识实质上凭的是感性知觉。例如,机器不会学不会问,所以没学问。你问人:吃了吗?人理解!你问机:充(电)了吗?机会理解吗?那种试图以现有形式化方法获取类人智能的思想也许确实是行不通的,因为从本质上讲,所有的仿真和模型都是错误的,只不过有些模型可参考性较大一点罢了。

    人与人之间有人道,机与机之间有机道,人与机之间有人机道。数据、信息、知识,三者之间由于主体介入程度上的不同,而性质随之变化。例如:当你面对一堆数据时,数据与主体产生关联,你就发现或得到信息;当信息做为对象被主体思维运算后,形成认识时,信息就变成了知识;当知识从主体传播出来,面对其他接收主体,又转换成了信息;当信息存储在外,无主体对应或介入时,就变成了数据。在语法面,规则性的语法逐渐为概率性的语法所替代,语义/语用方面,则出现了可能(性)的价值是新型决策依据

    人机融合智能科学要研究的是一个物理与生物混合的复杂系统。智能作为一种现象,就表现在个体与自然、社会群体的相互作用和行为过程中。基于信息技术的认知延展可以为延展认知的哲学假说进行辩护,而心灵的边界将变得更为模糊,身体、大脑、环境、技术、社会正在形成一种新的相互融合的智能体。这不仅仅会改变人的基本认知结构,也进一步改变了我们对人性以及对自身存在状态的理解。人与不同机融合表现出来的智能是不同的,与手机交互时的智能远远大于与自行车交互时的智能。或许这些行为和现象类似物理学一样必然有统一的力、相互作用、基本元素来描述。例如在图像识别中,真实的识别不是在图像中的位置(图像是一个平面)。而是要识别图像指向的空间中的位置。要建立空间概念,以及物体在空间中相互关系的概念。单纯基于概率统计的方法(先天智能)解决不了看图说话的问题,要建立一种基于当前图像个性反馈(后天智能)。人,有一种随时随地都可以“标注”的能力~“打”标

不管怎么标注都是终止于符号,而不是世界上的物体,应该做个能和环境世界打交道的东西,标注就是物体本身,物体的图像、声音、触觉、气味都可以通过训练映射到物体。不是说符号没用,符号本身也是物体对象,需要通过训练来认识它们。符号到其代表的物体的映射(或指向)关系也是通过训练形成。

    对人类而言最最神秘的意识是如何产生的,这个问题一直受到学者们的关注。其中有两个主要问题,一是意识产生的基本结构,二是交互积累的经验。前者可以是生理的也可以是抽象的,是人类和机器的差异,后者对人或机器都是必须的。意识是人机环境系统交互的产物,目前的机器理论上没有人机环境系统的(主动)交互,所以没有你我他这些参照坐标系。有人说“当前的人工智能里面没有智能,时下的知识系统里面没有知识,一切都是人类跟自己玩,努力玩得似乎符合逻辑、自然、方便而且容易记忆和维护”,此话固然有些偏颇,但也反映出了一定的道理,即意识是人机环境系统交互的产物,目前的机器理论上没有人机环境系统的(主动)交互,所以没有你我他这些参照坐标系,从而很难反映出各种隐含着稳定和连续意义的某种秩序。还有,人处理信息的过程是变速的,有时是自动化的下意识习惯释放,有时是半自动化的有意识与无意识平衡,有时则是纯人工的慢条斯理,但是这个过程不是单纯的信息表达传输,还包括如何在知识向量空间中建构组织起相应的语法状态,以及重构出各种语义、语用体系。

    而且自由调节的环境系统触发了自主体系的反向运动,由此形成了人机与环境之间的多向运动或多重运动,进而导致了矛盾和冲突。这种不一致甚至相反问题的解决常常不是单纯数学知识力所能及的,一个问题有边界、有条件、有约束的求解时是数学探讨,同一个问题无边界、无条件、无约束求解时往往变成了哲学研究。例如虚构如何修正真实,真实怎样反馈与虚构?这将是一个很有味道的问题!

三、发展与展望

    人机融合智能就是由人、机、环境系统相互作用而产生的新型智能系统。之所以说它与人的智慧、人工智能不同,具体表现在三个方面:首先是在智能输入端,它是把设备传感器客观采集的数据与人主观感知到的信息结合起来,形成一种新的输入方式;其次是在智能的数据/信息中间处理过程,机器数据计算与人的信息认知融合起来,构建起一种独特的理解途径;最后是在智能输出端,它把机器运算结果与人的价值决策相互匹配,形成概率化与规则化有机协调的优化判断。人机融合智能也是一种广义上的“群体”智能形式,这里的人不仅包括个人还包括众人,机不但包括机器装备还涉及机制机理,除此之外,还关联自然和社会环境、真实和虚拟环境等。着重解决上述人机融合过程中产生的智能问题。比如诸多形式的数据/信息表征、各种逻辑/非逻辑推理和混合性的自主优化决策等方面。

    总之,人机融合智能研究是智能技术发展到一定程度的产物,它既包括人工智能的技术研究,也包括机器与人、机器与环境及人、机、环境之间关系的探索。与很多新兴学科一致,它的历史不长,但发展速度很快。尤其是近些年,依托着深度学习的兴起,以及一些大事件(AlphaGo系列)的产生,人们对人工智能本身,以及人机融合智能研究的兴趣陡然上升,对其相关研究与著作也相对增多。但是,可以预期到的是,人机融合智能技术本身离我们设想的智能程度还相去甚远,且自发的将人的智能迁移到机器中的想法本身实现难度就极大。这是一个很难回避的问题。这些都需要目前的智能科学家们做进一步的研究。人机融合智能研究不仅仅要考虑机器技术的高速发展,更要考虑交互主体-人类的思维与认知方式,让机器与人类各司其职,互相促进,这才是人机融合智能研究的前景与趋势。

关于人机融合智能的一点思考

    没有历史和反思,人与机没有区别!未来,自主机器的因果、伦理关系与人类的因果关系将会有很大的差异。其根本就是事实与价值之间的相互作用问题,即being与should的关系问题。智能问题归根结底还是一种“人”学,不是“机”学!

1     引言

近年来,得益于机器学习的成熟,以及大数据时代数据和高性能计算/云计算的支持,人工智能(ArtificialIntelligence,AI)取得了突破性的进展,尤其是深度学习概念的提出和发展[1],以及和强化学习技术的结合应用,使得人工智能实现了在单一领域超越人的智能,诸如图像和语音识别领域[2-5],脑科学研究[6],以及基因科学等[7]。尤其是DeepMind打造的AlphaGo智能体在围棋领域以4:1战胜世界围棋冠军[8],以及后续的AlphaGoZero更是在无任何人类输入的情况下战胜了AlphaGo,在完全信息博弈领域彻底的取得了超越人的智能,引起轩然大波。OpenAI打造的OpenAIFive更是在Dota2游戏平台,在非完全信息博弈的战场环境下,5vs.5战胜了具有职业水平的玩家队伍[9]。

然而,当前的人工智能难以突破单一领域的限制,从而构建具有通用属性的强人工智能,究其原因是其难以突破意识的壁障,进行具备因果关系的推理[10-11]。为实现强人工智能,中国学者提出研究融合了人工智能计算属性和人的认知属性的混合智能[12-14]。同时斯坦福大学发布2030人工智能生活报告,也将人机相互补偿和增强的智能协同系统列为未来人工智能的重要发展趋势之一[15]。而且,为了实现人类智能与机器智能的深度融合并协同工作,国内外学者研究以脑机接口为代表的神经技术以实现脑机融合及其一体化[16-19]。然而,总体来讲,人机融合智能研究仍然处于起步阶段。为此,本文从信息、系统等多个角度对人机融合进行思考,对人机融合的定义、人机中的深刻关系以及人机融合的关键问题进行了分析和界定。

2     人机融合智能概念

机器在搜索、计算、存储等方面具有人类无法比拟的优势,然而在感知、推理、学习等方面远不如人类智能高效。为实现具有通用属性的人工智能,需要结合机器智能和人类智能的优势,实现将人的认知属性和机器计算属性深度融合。结合前人提出的混合智能的层次化概念框架[14],以及我们对人机融合智能中深度态势感知的思考[20],我们给出人机融合智能的体系结构,如图1所示。并给出人机融合智能的定义,如下:

人机融合智能是由人、机、环境系统相互作用产生的新型智能系统。它结合了人与机器各自的优势,是跨物种越属性的下一代智能科学体系。它兼具人类智能的意向性和人工智能的计算性,可以灵活的协调人机融合智能问题中的各种矛盾和悖论。

人机融合的体系结构采用分层的体系结构。人类通过认知对环境进行感知,其认知过程可分为意图层、决策层、感知与行为层三层,机器通过计算对外界环境进行感知,其计算感知过程也分为目标层、任务规划层、感知与执行层三层。体系结构强调人类和机器在同层次以及多层次之间的多尺度融合,强调人机环三者的深度交互。     

 

图1人机融合智能的体系结构

3     人机中的深刻关系

当前的人工智能专注于计算,基于物理规律对客观世界进行建模,凭借强大的硬件运算处理能力,可实现在单一的领域超越人的智能。但是由于机器更擅长处理家族相似的事物,人工智能一旦跳出模型所适用的特定领域,效果往往不尽人意。除此之外,计算的源头——数学,其本身并不是完全精确的,所以建立在数学基础上的人工智能本身也存在着许多无法修正的精度问题。

人的智能则与机器的智能有很大的不同。人具有意识,可以对客观世界进行自由的认知,通过对连续的物理世界利用自己的感性认知进行理性的抽样,总结出一系列的规则和逻辑,得到离散近似的科学。因而,在科学基础上建立的机器智能从根本上就是完全理性的,且其理性是建立在一系列的逻辑和规则上的。其完全按照人为设定的逻辑运行、利用人类数学进行计算,就连看上去十分智能的相似家族事件处理能力,究其根底,不过也是人类数学在机器上的运用。与此相对,人的理性则是建立在以感性认知为底层的理性之上,这是人与机器最大的不同之处。

目前的人工智能以计算机为中心,并没有实现“以人为中心”的认知。在1968年图灵奖获得者理查德·哈明就说过:“计算的目的不在于数据,而在于洞察事物。”计算机的本质就是通过数理反应心理和物理规律。玻尔也说过:“完备的物理解释应当绝对地高于数学形式体系。”认知的核心是智能,是洞察事物,所以计算属于认知,但认知却不等同于计算。以计算为中心的人工智能和以认知为中心的人类智能各有优缺点,基于计算的机器如果没有人的认知能力,就永远也跳不出“人工”的痛点,当然,人肉体的局限性也使得人不可能具备机器的高速运算和处理能力。然而,人工智能模拟的就是人的智能,人类智能核心是心理,根本在于理解,但人工智能的理性和人类理解是不一样的,数学的方法可能遮蔽了深刻的洞察,抛弃心理的本质而追求高效率的计算并不能实现真正的人工智能。将人的认知模型引入到人工智能中,将两者结合并使之协调发展,让它能够在推理、决策、记忆等方面达到类人智能水平,才是未来智能的趋势。未来的智能应该在融合了诸多学科新一代数(信息)学的基础之上成长起来,而不是仅仅建立在当前有着诸多不完备性的数学基础之上。

实现人机融合的智能,人的意识是重要基础,帮助协调人机融合中各种悖论和矛盾。人机融合智能的实质是在“以人为中心”的意识统筹下的多无意识智能在大脑的融合。意识是对各种客观事物的主观体验。人类本来就是意识和无意识的融合,人的大部分思维、动作和行为都是无意识的,有意识的只占极少数。意识的反应慢,会受到距离的影响,从腿上出来的信号比从眼睛传来信号要慢很多。无意识的反应速度很快,诸如看到飞蛾眨眼,无意识的抓住落下的笔,这些都是本地化的智能反应。意识只存在于大脑深处的某个区域,而身体各部分都只是具有自己的智能,而无意识。这也影射了人机融合智能的可行性,通过发展具有足够智能的机器,作为人无意识部分的延伸,结合人的意识,形成更强的人机融合智能体。

4     人机融合的关键问题

人机融合智能研究的对象是物理和生物混合的复杂系统,是广义上的“群体”智能,包括人、机和环境。智能作为一种现象,本身就表现在个体、群体以及自然的相互作用和行为过程中。人机交互本质上是人的感性结构化与人的部分理性程序化之间的融合。人类理解世界是通过认知,所以人能相关表面上看上去无关的东西,但是机器却做不到。人有跨领域结合的能力,而机器没有。建立人与机器之间的双向交互关系,是实现真正智能的突破口。朱利奥.托诺尼的整体信息论(IntegratedInformationTheory,IIT)表明,一个有意识的系统必须是信息高速整合的[20]。为了保证人机融合智能系统共同意识的存在,人和机器之间必须建立高速有效的双向信息交互关系。为构建人机之间的双向交互关系,需要从抽象的角度着手,抽象的角度越高,适应范围越广,用一层层的抽象方法去理解事物的本质,就能从思想上突破技术的局限性。另外,试图以形式化的方法获取人智能的思想是行不通的,因为模型并不是完全准确的。

人机融合智能的一个瓶颈问题,是如何将计算和认知结合起来。1971图灵奖获得者约翰·麦卡锡发表观点:“与所有专门化的理论一样,所有科学也都体现于常识中。当你试图证明这些理论时,你就回到了常识推理,因为常识指导着你的实验。”从中,我们不难看出:认知里的常识恰恰是被计算所过滤掉的精华。常识就是非结构化的多模态信息/知识的复合体。研究将常识应用于计算是突破知识和认知结合的关键。

人机融合的关键还应该包括:一多与灵活弥聚的表征、公理与非公理混合推理、直觉与“间觉”交融的决策。首先,通过人的价值取向有选择地获取数据,在这个输入过程中不仅是客观数据与主观信息的融合,还应该包括人的先验知识和条件;其次,在人机信息/数据融合处理过程中,人的非结构化信息框架(如自然语言)会渐变为结构化一些,而机的结构化数据语法就会非结构化一些,这个过程不但要使用基于公理的推理,并且还需兼顾结合非公理性推理,使得整个推理过程更加缜密合理;最后,在决策输出阶段,人常常是由脑中若干记忆碎片,与五感接收到的信息,综合在一起,跳过逻辑层次,直接将这些信息中和的结果,反射到思维之中,形成所谓的“直觉”,其结果的准确程度,在很大方面取决于一个人的综合判断能力,而机器则是通过计算获得的结果--“逻辑”进行间接评价,这种把直觉与“间觉”相结合的独特决策过程就是人机融合智能输出的一大特点。

人机融合智能的一个核心问题是介入问题,即人与机相互之间何时何处以何种方式(或平滑或迅速)介入的问题,尤其是在歧义点或关键阈期间介入的反应时、准确率。比如,在融合时彼此之间的接受、容忍、信任、匹配、调度、切换、说服、熟练程度,以及如何训练出个性化的伙伴关系等都是具体亟待解决的问题。由于人机融合在细节层面和人人之间的合作几乎同样复杂,或者说是有一些另类的复杂问题。因而可以认为,从技术角度讲,人机融合智能绝不仅是一个数学仿真建模问题,还应是一个实验统计体验拟合的问题。

人机融合智能的另外一个重要问题是伦理问题。人类价值观的起源是伦理学,人类自身的伦理道德困境就很多,所以人机融合的未来也会困难重重。人机融合智能有两大难点: 理解与反思。人是弱态强势,机是强态弱势,人是弱感强知,机是强感若知。人机之间目前还未达到相声界一逗一捧的程度,因为还没有单向理解机制出现,能够幽默的机器依旧遥遥无期。另外,人机之间配合必须有组合预期策略,尤其是合适的第二第三预期策略。单纯的一次期望匹配很难达成融合,所以第二、第三预期的符合程度很可能是人机融合一致性的关键问题。人机融合就是机机融合,器机理+脑机制;人机融合也是人人融合,人情意+人理智。

5        总结

人机融合智能研究是智能技术发展到一定程度的产物,它既包括人工智能的技术研究,也包括机器与人、机器与环境及人、机、环境之间关系的探索。与很多新兴学科一致,它的历史不长,但发展速度很快。尤其是近些年,依托着深度学习的兴起,以及一些大事件(AlphaGo系列)的产生,人们对人工智能本身,以及人机融合智能研究的兴趣陡然上升,对其相关研究与著作也相对增多。但是,可以预期到的是,人机融合智能技术本身离我们设想的智能程度还相去甚远,且自发的将人的智能迁移到机器中的想法本身实现难度就极大。这是一个很难回避的问题。这些都需要目前的智能科学家们做进一步的研究。人机融合智能研究不仅仅要考虑机器技术的高速发展,更要考虑交互主体-人类的思维与认知方式,让机器与人类各司其职,互相促进,这才是人机融合智能研究的前景与趋势。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇