博舍

医疗人工智能与未来医院信息化建设 医院的人工智能诊断系统包括

医疗人工智能与未来医院信息化建设

人工智能在医疗领域的应用,在国外从1972年到2016年期间每年都有新的进展和突破,学术界每年都能出现关于辅助诊断、辅助治疗等技术的成果,这是持续不断的过程。但在国内,从1978年“关幼波肝病诊疗程序”率先把中医学这门古老的民族学科与先进的电子计算机技术结合起来,直到2016年百度发布百度医疗大脑,中间出现了长达38年的断层。

随着技术进步,在医疗健康领域已有不少智慧医疗应用成功案例,如辅助疾病诊断、健康管理、医学影像、临床决策支持、便携设备、康复医疗和生物医学研究,但国内外在大数据技术、人工智能技术、医用机器人与可穿戴设备等方面还存在着不小的差距(如上图)。

我国智慧医疗的发展主要存在几个问题:

第一,数据采集和利用的问题。医疗数据不同于商业数据或者消费数据,因为涉及到隐私而导致高保护级别,在国内出现过几次医疗隐私数据泄露事件而引起了国家高度的重视,因此如何有效的采集和利用医疗数据是第一大难题;

第二,环境及专业人才稀缺的问题。现在人工智能技术人才非常稀缺,而既懂医疗又懂人工智能技术的复合型人才更稀缺;

第三,基础支持的体系与计算能力的问题;

第四,标准和规范建立的问题。现在医疗行业仍处于野蛮生长环境中,并没有充足的规范或标准;

第五,信息安全和隐私保护的问题。一旦开始利用人工智能就要考虑容错率,例如无人车可以接受从10%到万分之一的容错率,但在医疗行业连万分之一的错误率也不被接受。美国到现在为止,FDA(国际医疗审核权威机构)的人工智能诊断类应用屈指可数,而诊断类也只是非常基础的应用。现在人工智能还不能代替人类医生进行诊断,不过当人工智能技术达到了某种可靠性之后,信息安全和隐私保护就会变得非常重要;

第六,产业化发展问题。现在这个领域已经进入了包括BAT的科技巨头、新兴的生物科技、医疗科技公司,但在产业化发展的道路中并没有一个有效的指导,出现只追求快速发展,而疏忽过程中的重要环节,或解决的其实并不是医疗行业的核心需求。

从2015年开始,国家政策就开始推动医疗与技术的结合。从“互联网+医疗”,到“人工智能+医疗”,其实在业内更多思考的是“医疗+”,因为无论技术怎么变化,核心应该还是医疗。

在雨后春笋一样出现的大批互联网医疗、人工智能医疗公司中,很多不是从解决某一类具体医疗问题出发,而是先成为掌握某项技术的厂商,再去找医院或医生合作,谋求短期内在某个场景中落地,开发出某款产品、某种解决方案。这样的场景可能不是真正的场景,解决方案与场景可能不完全匹配。这样没有医疗根基的企业,很难在医疗行业立足。

从医院的角度,什么才是人工智能技术真正的应用场景呢?这就要从打造有思维、能感知、可执行的智慧医院目标说起。

一家医院要称为有“智慧”,必须具备:

第一,智慧“大脑”:思考和指挥。“大脑”融汇了大量信息(大数据)和知识(知识库),并能不断学习和进化(人工智能、深度学习)。针对外部刺激,“大脑”可以迅速对信息进行有效组织和组合,作出决策并指挥“行为”;

第二,感知“器官”:感知和采集,“大脑”的思维判断需要众多信息输入作为依据,这就依赖于感官:视觉(摄像头)、听觉(智能语音助手)、嗅觉、触觉(各种智能设备及传感器)对医院各种数据的采集,既包括人员的行为数据(患者动线、医护人员动线、医院物质运送动线)、医疗过程及结果数据,也包括空间环境的信息(能耗、空气质量);

第三,“血液”循环:数据驱动,不断汇聚临床表型数据和科研组学数据,并以个体行为数据为补充,形成临床研究大数据。这些数据传送到大脑进行学习和决策,从而指挥“行为动作”(各种应用软件系统);

第四,“人体骨骼”:软硬件设施,转化医学中心的软硬件设施互联互通形成一套整体支撑“行为动作”;

第五,“人体四肢”:医疗科研服务,转化医学中心的提供的医疗及科研服务(招募、预约、检查、治疗、康复、随访等)。

由此可以把人工智能在医院的应用场景分为四类:第一类为智慧服务,这是当下最热门的领域,像互联网+医院、人工智能+医院、App移动医院等都集中在这一领域;第二类为智慧管理,更多服务于医院的医疗和运营管理;第三类转化医学研究,像临床研究和新药研发未来都会依赖于数据或人工智能,在未来也是很大的产业;第四类教育,包括对患者的科普类教育,分级诊疗中对各层级基层医院的基础教育。这四大类是医院最需要应用人工智能的场景,未来这几类场景中将有优秀的新产品、新技术和厂商诞生。

这四大类场景具体来说又包含:

诊前:首先,患者身份识别。现在的身份识别技术依赖于医疗卡。未来患者在就医时,从接待到就诊、取药、医技服务及后续的预约等一系列服务,都可以通过无感面部识别技术来实现,将大幅提高医院就诊的效率。从医院的角度出发,当前技术还不是非常成熟,会先从人流量较小的诊疗区域如特需医疗、高端医疗或私立医院等进行测试,在技术逐渐成熟、能够识别大量人员信息后,就可以淘汰现在所用的磁卡,为患者带来很大的便利;其次,自动缴费。从2013年开始,支付宝等发了这一应用场景,已经在医院运行良好;再次,智能化的引导。现在已经有APP室内定位等多种引导方向,未来的智能服务机器人引导可能不是单纯的诊室导航,而是全程从到入院开始或之前就可以像护士陪同一样,进行病情的分类、分诊,然后引导最优路径,让患者有很好的就医体验;最后,在就医过程中涉及的检查或取药的行为,比如自动发药机已经在一些医院开始大规模的应用。现在自动发药机还需要医务人员在发药后进行药品的核对,之后再交给患者,未来将像自助银行一样直接为患者提供取药或检查。

诊间:现在医患的沟通非常短暂,特别是大型三甲医院,医生的诊疗任务非常繁重。未来,通过大数据、大屏互动等技术,把患者生命体征数据、历史诊疗数据等提前告知医生,患者到诊间后就可以在屏幕前进行良好的沟通,从而提高沟通率,也提高患者的满意率。

诊后:当诊疗结束后,患者大部分时间是在家里进行健康管理,未来人工智能在这个领域也有很好的应用。虽然医院提倡全程诊疗,但由于医患比例严重失衡,并没有时间一对一进行个性化看护,这就给了智能化很大的空间。可穿戴设备已经实现了血糖检测、心电监测、运动监测、饮食种类和热量的监测,未来如果把已经制定好的饮食处方、运动处方等通过可穿戴设备在院外的患者进行有效的干预或健康生活方式的引导,将对慢性病人起很大的作用。

病房:患者住院的过程中,怎样有效、实时地收集患者的生命体征数据?怎样对患者进行有效、及时的治疗干预?怎样对患者进行有利健康的宣教?由于医护与患者比例严重失衡,需要人工智能技术来辅助医护人员高效地完成工作,同时又让患者感受到温暖,这是未来智慧病房中人工智能技术和生物技术的应用方向。

日常诊疗:查房和电子病历等工作战胜了医生的大量精力,现在用机器人查房可以来帮助医护减轻工作量,通过自然语言处理技术自动形成电子病历,让医生省去键盘输入的过程。

护士站:护士在执行医嘱时,有大量的护理工作要做,包括医嘱的核对、药品的发放、生命体征的采集等等,而通过智能化的配置或物流,能帮助护士更高效、更标准化地为患者提供服务,且防止出错。

对外开放:教学型医院、科研型医院或多或少会有对外开放的需求,人工智能在展厅的打造、来访预约、参观者身份识别、满意度跟踪等方面都有很好的应用。

自动化可追溯物流:把流程按医院所需进行改造后,物流企业就可以快速进入医疗领域,为各大医院提供相应的服务。现阶段轨道传输体系、气动传输体系、机器人传输体系等已经在一些医院应用,还有一些专业领域仍在做新的探索,比如样本传输体系有全管道低温保存的要求。

智能大楼:现在智能大楼的建设中,与智慧医疗之间相应的衔接非常少,未来把这两项技术相衔接会有非常好的发展空间。

管理仓:医院从医疗到管理、从物流到后勤保障都智能化之后,很难通过直观方式了解到运行的情况或规律,需要有类似驾驶舱的全局管理舱,让管理者在驾驶舱了解医院运行的情况。

在医院全面普及医疗人工智能,一个比较大的挑战是医院的接受程度。但经过互联网的洗礼,大多数医院也在尝试拥抱技术。除此之外,还面临着几个挑战:

第一,人才。美国人工智能人才数量近85万人,中国仅有5万,人数相对较少,并且人工智能人才成本高昂;

第二,数据。数据和数据之间是有壁垒的,各医院和各专科之间的数据并不连通。如果要得到高质量的数据,首先要与一家或者多家医疗机构进行协作,这非常困难,因为全国最优质的医院和专科之间的协作是有限的。卫计委等等组织和一些高校也在寻求突破,他们希望通过行政力量把医疗机构的数据组织在一起,形成一个数据库,用沙盒技术为未来的人工智能企业提供“养料”或学习资料,但推进的速度并不是那么快。除此之外,还有数据归属不明确、数据安全要求高、数据开放受限制、数据标准不统一、数据伦理存争议、数据成本代价高等问题,这些都是制约人工智能医疗行业发展的重要因素;

第三,审批。在AI医疗器械审批方面,由于产品未获得三类医疗器械证书就无法上市,因此产品审批难以通过成为产业发展的重要掣肘。现在人工智能诊断技术在飞速发展,很多企业或高校宣称在某些比赛中人工智能诊断能力已经超过了人类医生,但在中国几乎没有通过了国家食品药品监督管理局审批的人工智能诊断算法或应用,在国外也是寥寥无几。像诊断、治疗方案等需要的智能和科技程度较高,需要得到相应的审批才能进入医疗市场。而一种新药的审批可能长达十年,一个新的医疗器械的审批也是要两三年,在人工智能领域一项技术也要进行临床的诸多实验才可以在临床上应用。当然,健康指导、宣教、问诊服务一类的人工智能服务,不涉及治疗或者诊断过程,审批相对没有那么严格;

第四,伦理。现阶段医学人工智能诊断系统难以解释诊断的原因,而一旦诊断结果出现问题,也无法追根求源到底是人类医生、数据还是算法本身出现了问题,因此仍存在“黑盒”风险;

第五,盈利。在行业应用方面,目前付费方不清晰,买单方是医院、患者、药企、保险公司还是政府,未来需要多方探索。

传统医疗信息化体系在人工智能时代正在改变,也暴露出其薄弱之处。主要集中在三个方面:一是数据采集,二是数据采集的范围、质量,三是应用的个性化与智能化的程度。

针对这些问题,医院信息化体系的建设还是要以数据为基础、技术为核心、服务为导向。

在未来智慧医疗希望能够有两个体系:一个是应用体系,可通过将人工智能智慧应用与现有应用相互融合协作共同服务于医疗业务的形式,逐步由半智能化过渡到全智能化甚至是无人化,整个过程由各智慧应用的部署形成“智能节点”,替换原有流程上的各个节点,形成“智能单元”,最后由各单元链接形成“智能网络”,最终形成完整的智慧医院应用体系;另一个是生态体系,通过智慧养老、智慧药房、智慧医疗、智慧健康的医联体,体系化的建设医疗机构,为医疗提供更好的服务。

新疆喀什地区县市之间的平均距离超过200公里,其中有些县更是深藏在极端自然环境之中,如帕米尔高原的雪山、塔克拉玛干大沙漠。远程医疗模式在这里能发挥极大的作用,帮助当地百姓足不出户享受优质医疗服务。

上海对口支援新疆喀什第八批医疗队的目标,是帮助喀什二院升级成三甲医院并全面提升信息化能力,使其未来成为能够连接乌市和上海医疗五级联动体系的枢纽和核心,打造成为南疆医疗高地,带动和辐射周边地区的医疗服务能力。

当时的远程医疗的需要是:一,建立云计算数据中心,构建南疆医联体信息平台,打造喀什地区区域医疗信息化;二,建立南疆医联体互联网远程医学中心。

这时出现了新的问题:医疗活动发生在医院的各个角落,通过传统远程会诊系统的建设方式无法满足需要,或是需要耗费巨额资金和精力。根据上面这个问题,提出的解决方案是采用移动推车,把一些简单的远程设备架设在医疗推车上,推到病房中去。但这需要要让设备能自动行走,不需要护士为此做更多的额外工作,还想要帮助护士从一系列重复性劳动力工作中解放出来。

科研团队认为,医疗服务机器人的核心功能有三个:一,跑腿,精准地在病房内移动,找到具体的目标和人物;二,替身,代替专家作为主治大夫、带教老师、指导专家出现在多地,作为护士的替身帮助实现简单查房、宣教、量表;三,耳目,在确保隐私和伦理安全的情况下,监察病区环境、监察患者情况,及时感知、及时处理。

此外,还有几个特殊要求:一,身材要尽量纤细,真实的医疗场景非常的拥挤,机器人要能够穿梭于拥挤的场景中;二,高机动性,医护平时走路的速度都非常快,机器人不能拖后腿,现在很多的机器人还要等一两分钟才能跟上,在核心的应用场景中失去存在的意义;三,传感器要足够的多;四、可以搭载各式各样的人工智能应用。

最后通过医工结合的模式,将人工智能技术、机器人技术与远程医疗活动相融合,把核心医院、专科医联体、援外医联体、托管型医联体、直管型医联体等形成一个协作网络,实现远程查房、远程会诊、远程疑难病理讨论、远程医疗等一系列的功能。

智能医护服务机器人项目只是开始,通过人工智能、机器人、物联网技术,打造多模态混合智能交互医护服务集成示范区。在人机协同的基础上通过自主学习逐步提升服务深度,最终实现无人化照护服务,解决医护人员短缺、医患沟通不足、照护不全面、人性化服务缺乏等一系列医改核心问题,用AI全面赋能医护服务,助力健康中国2030规划。

从这个案例可以看出,新产品、新的解决方案的产生的过程中,核心是医疗。这个项目最早的时候,并没有瞄准人工智能领域,只是为了解决让医生能够远隔千里更好地进行医疗活动的问题,在解决问题的过程中,才逐渐有了智能医护机器人的诞生。后来在援外工作中,像日喀则、喀什、云南、新疆、西藏各个地方都有非常好的应用,包括在整个医联体的领域内,如儿童医学中心的专科医联体、综合医联体、民营和公立医院相结合的医联体中都发挥了非常好的作用。整个产品在研发过程中迭代了很多代,最终拿到专利,实现了产品化。从现在的角度上来说,这个人工智能技术和医疗场景相结合的产品,其实是从一个小需求出发,一步步演变过来的。

所以,还是要从需求出发,看一看初心是要解决什么样的问题,需要什么样的产品,然后慢慢地演化、与最新的技术相结合,而这种结合也不是硬结合,而是为了达到某种效果而选用了某项技术。

人工智能近期在三个领域可能会有突破:第一是智能医护服务机器人,对患者进行感知、适当的干预,从远程医疗出发,在护理、健康、陪护、康复、助残、巡检、导览等公共服务中发挥作用;第二是虚拟护士或者虚拟助手,通过语音、语义等技术结合,是非常好的突破点。但虚拟护士一般并不提倡由人工智能完全接管而是人机协作,人类可能只负责20%最尖端的、最需要协调的工作,人工智能负责大量粗活脏活累活;第三是IOT智慧病房。未来通过可穿戴设备、物联网、传感器,把后续要分析、决策、干预或者提供服务的所需数据采集上来,采集的越多意味着思考越完善、分析越彻底、服务越精准。

总结来说,当下可能是医疗机构信息化的分水岭,之前称为传统医疗信息化,而发展到今天,医院对于应用系统专业化和智能化的要求将日趋显现。针对医院特定人群、特定业务、特定需求提供具有针对性的智能应用将是未来智慧医疗发展的主要特征,其特点是智能、精准、迭代频繁、重视应用的个性化和创新性。随着技术的快速发展以及医疗信息化领域相关产业的日趋成熟,未来智慧医院建设发展将呈现共性与个性并存的特点。

2019年,中国将全面展开医联体的建设工作,所有三级公立医院均参与医联体建设。目前,我国已形成了城市医疗集团、县域医共体、跨区域专科联盟、远程医疗协作网4种医联体模式。2019年,我国将在100个城市开展城市医疗集团建设试点,在医疗集团内部建立以信息化为支撑的远程医疗系统、远程会诊系统、远程教育系统、双向转诊系统,各级医疗机构信息互联、互通、共享,为患者提供连续一体化的诊疗服务,同时重点在500个县开展县域医共体建设,提高基层医疗服务水平。

中国大规模推广医联体模式,是人工智能在医疗和医院体系创新创业的重大契机。过去,人工智能进入医疗和医院体系,只能在外围和辅助服务方面发挥作用,无法进入医疗和医院的核心运营体系。而随着医联体的推广,远程医疗、医疗机构互联互通、家庭看护等需求将规模化兴起并进入到医联体的核心运营体系,这打开了人工智能的创新应用空间。实际上,新的医疗体系变化正在发生:据国家卫健委统计,2018年全国医疗机构双向转诊患者1938万例次;其中,上转患者比上年同期减少15%;下转患者比上年同期增加83%;75%的医疗机构实现医联体内检查检验结果互认,远程医疗协作网覆盖所有地级市和1800多个县。

当医疗和医生系统发生重大的体系性变化时,正是创业投资的好时机。回归医疗初心,不为了技术而技术,是考察医疗人工智能项目的出发点和最终落脚点。

*本文作者钛资本。欢迎添加数字观察官微小妹(ID:renxueyun710),加入企业服务行业社群(请备注姓名-公司-职位,无备注者不予通过)。

返回搜狐,查看更多

天坛医院推出人工智能诊断系统 准确率达95%以上

原标题:天坛医院推出人工智能诊断系统准确率达95%以上

“人脑”疾病将由“电脑”给出精确诊断,并提供最佳的治疗和预后方案。12月22日,全球首家“神经疾病人工智能研究中心”在北京天坛医院挂牌成立。明年6月,该中心将推出神经疾病人工智能诊断系统,其诊断准确率可达到95%以上,相当于一个高年资主任医师级别的水平。

神经细胞的损伤具有不可逆性,因此,神经系统疾病的早发现、早诊断、早干预,是影响治疗效果的关键。北京天坛医院常务副院长王拥军介绍说,神经系统疾病复杂程度高、定位诊断难度大,我国很多医院医疗水平参差不齐、高级专业技术人才缺乏,导致误诊率、漏诊率较高,诊断效率低下。

人工智能将解决这些问题。12月22日,全球首家“神经疾病人工智能研究中心”在北京天坛医院挂牌成立,中心将打造国际领先的神经系统疾病人工智能。通过让人工智能机器人跟着专家学习病人诊断,未来达到专家的水平,弥补大医院专家和基层医院之间技术的不平衡。

人工智能诊断系统的准确率将达到95%以上,相当于一个高年资主任医师级别的水平。王拥军介绍说,人工智能最大的优势在于学习,它可以通过自己的感觉,比如对临床症状的识别、影像颜色的改变、信号强度的改变等,在计算机里进行处理,看人工智能的处理和专家之间有什么差别,“通过这样反复地学习,就能找到专家的看病方式和计算机处理之间的契合点,学习1000-2000例诊断后,诊断准确率将达到95%以上。”

“目前第一期的研究成果,人工智能看核磁、诊断脑瘤的能力与我们医院放射科主任的符合率达到99%,这就超越了所有的年轻大夫,包括全国所有的神经放射科大夫”,王拥军举例说。“在人工智能的帮助下,神经影像、神经病理方面顶级专家经验可以很快得到学习推广,同时可以节约患者时间,比如现在核磁检查的结果需要等才能拿到,但是把人工智能引入到核磁的话,做完检查几秒钟就可以读片子出报告”。

明年6月,神经疾病的人工智能诊断系统将正式推出。“现在人工智能已经学完了脑瘤的诊断,下一步要学的是脑血管病,明年6月这些系统就可以应用到临床上,不仅做出诊断,并且可以给出治疗建议”,王拥军透露,中心先期已开展了头部核磁、CT影像人工智能诊断产品的研发,是全球首款头部疾病(涵盖了脑肿瘤、脑卒中等)核磁、CT影像人工智能诊断的整体应用产品。

届时,还将组织来自全球的顶级专家,进行一场神经系统疾病诊断的“人机大战”,以验证人工智能诊断的准确性。“我相信计算机一定会胜出,获得全球第一名的”,王拥军说。

(原标题:天坛医院明年推出人工智能系统诊断准确率超95%)返回搜狐,查看更多

责任编辑:

医学人工智能的发展

强大的医疗健康需求、丰厚的数据技术积累,让“AI+医疗”一直以来备受各界关注。

人工智能是当今科技界最热门的领域,而医学人工智能更是热门中的热门。谷歌、微软、IBM、百度等科技巨头都积极布局智能医疗产业,美国麻省理工学院、斯坦福大学、卡内基梅隆大学以及我国的清华大学等知名学府均把医学人工智能作为未来发展重点,美国、中国、日本、英国等世界各国人工智能计划也都把医疗作为重要的应用领域。

专家系统与智能诊断

专家系统(ExpertSystem,ES)是人工智能一个重要的分支学科,是一种根据专家专业知识和工作经验,用于求解专门问题的计算机系统。医疗诊断正是一项典型的专家任务。因此,医学专家系统是应用较早、使用广泛、卓有成效的人工智能技术。

●专家系统的发展

专家系统的发展曾红极一时,如今却沉寂无闻。专家系统一般包含6个部分:知识库、数据库、推理机、用户交互层、解释器和知识获取模块,因需求的不同而具有不同的结构。其中,知识库和推理机是系统结构的核心部分。知识库是将专家的知识准确、简明、有效地转换成机器理解的语言,常用的方法主要有产生式表示法、框架表示法和语义网络表示法。推理机是专家系统的“思考”结构,通过模拟专家思维过程进行问题求解,主要方式分正向推理、反向推理以及正反向混合推理。

专家系统技术上经历了孕育、产生、成熟和发展等4个阶段。1956年,美国达特摩斯(Dartmouth)学术会议召开,“人工智能(ArtificialIntelligence)”术语首次采用,标志着人工智能学科正式诞生。其后,人工智能分别在3个方向上迅速得到发展:一是机器思维,如机器证明、机器学习等启发程序,以及化学分析、医疗诊断等专家系统;二是机器感知,如机器视觉、机器听觉等文字、图像识别、自然语言理解,以及感知机、神经网络等;三是机器行为,如具有自学习、自适应、自组织特性的智能控制系统、控制论动物和智能机器人。1965年,美国斯坦福大学计算机科学家费根鲍姆(EdwardFeigenbaum)开始研制世界上第一个用于推断化学分子结构的专家系统DENDRAL,标志着人工智能学科中“专家系统”分支学科即将孕育而生。1968年,DENDRAL成功问世开启人工智能一个新的分支“专家系统”。

20世纪70年代,专家系统技术已经成熟,并广泛用于其他领域。斯坦福大学的肖特利夫(EdwardH.Shortliffe)等人自1971年开始。1976年完成了第一个用于血液感染病的诊断、治疗和咨询服务的医疗专家系统MYCIN。斯坦福研究所的杜达(RichardO.Duda)等人自1976年开始。1981年完成地质勘探专家系统PROSPECTOR。1977年,费根鲍姆提出“知识工程”概念,大大推动了基于知识的专家系统及其开发工具的发展,如骨架型专家系统开发工作EMYCN、KAS等,知识获取辅助工具TEIRESIES、SEEK等,通用知识表达语言LISP、PROLOG等。

20世纪80年代,专家系统开始走出实验室进入市场。1981年,英国赫特福德大学教授克洛克森(WilliamF.Clocksin)出版了《PROLOG语言编程》。1982年,第一个商用专家系统R1在数据设备公司(DEC)成功运行。1983年,美国斯坦福大学教授海斯罗思(BarbaraHayes-Roth)出版了《建立专家系统》。1985年,美国加利福尼亚大学教授哈蒙(PaulHarmon)出版了《专家系统:人工智能业务》。据统计,差不多1星期就会有一个这方面的公司诞生,专家系统及其工具在越来越商品化的过程中形成一门旨在生产和加工知识的知识产业,专家系统迎来了自己的“黄金时代”。

但是,由于专家系统应用领域过于狭窄,知识获取“瓶颈”和不确定性常识推理等困难,20世纪80年代后期商业需求锐减,以专家系统所代表的人工智能迎来历史最寒冷的“冬天”。20世纪90年代,专家系统开始进入缓慢发展时期,研究转向了与知识工程、模糊技术、实时操作技术、神经网络技术和数据库技术等相结合的发展方向。

●专家系统在医学领域的应用

医学一直是专家系统应用最有效的领域。人工智能几乎一诞生就应用于医学领域。1954年,美国华人科学家钱家其就使用计算机计算剂量分布、进行放射治疗。1959年,美国乔治敦大学教授莱德利(RobertS.Ledley)首次应用布尔代数和贝叶斯定理建立了计算机诊断的数学模型,并成功诊断了一组肺癌病例,开创了计算机辅助诊断的先河。1966年,莱德利正式提出了“计算机辅助诊断”的概念(ComputerAidedDiagnosis,CAD)。1968年,DENDRAL专家系统诞生。不久,MYCIN医学专家系统就研制成功。该系统首次采用知识库、推理机系统结构,引入“可信度”概念,进行非确定性推理,对用户咨询提问进行解释回答,并给出答案的可信度估计,形成了一整套专家系统的开发理论,为其他专家系统的研究与开发提供了范例和经验。

其后,医学专家系统逐渐成为医学领域内的一个重要分支领域,并在20世纪80年代达到高潮,出现了大量的综合医学专家系统。1977年,美国拉特格尔斯大学的韦斯(SholomWeiss)等人最早提出一个专家系统可用于多个领域,并把开发出的专家系统命名为CASNET,用于治疗青光眼疾病。1982年,美国匹兹堡大学的米勒(RandolphA.Miller)等人发明了著名的Internist-I内科计算机辅助诊断系统,其知识库包括了572种疾病,约4500种症状,以及10万种疾病与疾病表现之间的联系,拥有当时最大知识库。1991年,美国哈佛医学院的巴尼特(OctoBarnett)研制了DXplain软件,包含了2200种疾病和5000种症状。

20世纪90年代,医学专家系统逐步发展成为针对某一种或一类的疾病的专项专家系统。1990年,美国南伊利诺伊大学的乌姆博(ScottE.Umbaugh)开发的皮肤癌辅助诊断系统,使用自动感应工具产生规则来确定多变的皮肤颜色。1993年,美国哈佛医学院的研究人员构建了动态影响图的实时系统,用于诊断急性腹痛疾病。1994年,英国普利茅斯医学院的基思(RobertD.F.Keith)采用人工神经网络技术开发了智能胎心率宫缩描记图(Car-diotocography,CTG)计算机辅助分析系统,获得满意的效果。1995年,美国俄勒冈健康与科学大学伯恩多夫(NormanI.Birndorf)等人将规则和人工神经网络理论相结合,构建一个混合的专家系统用于评估小红血细胞性贫血疾病。1996年,美国巴特勒大学的林恩(LynnLing)建立了一个典型的艾滋病专家诊断系统。这些专家系统促进了医学科学的发展。进入21世纪后,专家系统进展缓慢,医学专家系统取得的成果也不多。

我国医学专家系统研究始于20世纪70年代末期。1978年,北京中医医院的关幼波与电子计算机室的科研人员,根据自己的辨证施治经验,研发出肝病诊疗程序,在国内率先把中医学与电子计算机技术结合起来,开创了我国第一个医学专家系统。1981年,中国科学院成都计算机应用研究所和成都中医学院共同研制成功了中医痹症计算机诊疗系统,完全符合率达96.88%。但是,以上两个系统没有明确的知识库和推理机概念,更多的是直接模拟诊断,缺乏灵活性。

20世纪80年代,专家系统在中医领域得到迅速的推广。1982年,宇文贤设计实现了基于滋养细胞疾病的诊治的一种计算机诊断医疗专家咨询系统。1983年,张志华利用计算机辅助实现基于医学上常见的盆腔子宫内膜异位症的诊断。此后,各种名称的中医专家系统如雨后春笋般涌现,达到鼎盛时期,据统计有140多个。

20世纪90年代,我国专家系统应用进入西医领域,发展渐缓。1990年,华西医科大学口腔医学院的魏世成等人开发出颞颌关节紊乱综合征专家系统。1997年,李雪荣等组建了一个儿童心理障碍标准化诊断与治疗的人工智能专家系统。1998年,张玉璞设计并实现了基于波形分析的心血管疾病诊断的专家系统。2000年,哈尔滨工程大学的刘长征等人研发神经内科疾病诊断与治疗专家系统,用于神经内科疾病诊断与治疗。2001年,南京大学生物医学物理研究所与江苏省人民医院的石晓东、仲远明等研发耳穴信息智能识别系统,通过识别人体耳穴电学特征量筛检上消化道癌。2002年,武汉理工大学的吴钊等人研发了模糊口腔癌症诊疗专家系统,用于口腔癌症诊断与治疗。2003年,山西医科大学的吕晓燕、郭建军等研发了胃癌诊断专家系统,用于胃癌的临床诊断。2005年,中国科学院沈阳自动化研究所与中国科学院研究生院的曾文、刘尚辉等人开发了结核病诊断专家系统。2006年,山西医科大学与中北大学的葛学军、李冰等人开发了口腔牙周病诊断专家系统,集合口腔牙科专家知识,用于口腔牙周疾病诊断。2008年,深圳市人民医院开发出了用于对于人体血气中酸碱度的检测分析计算机辅助专家系统。至此,短短30年,除西藏、宁夏、海南、香港、澳门之外,我国其他29个省区市都先后开展或涉足了中医专家系统的研究,开发了多种多样多功能的医学辅助诊断治疗系统,先后研制出220个中医专家系统和开发工具。但是,真正能够为医生所接受并且投入临床使用的医学专家系统少之又少。

机器学习与智能影像

机器学习与专家系统一样,都是人工智能机器思维研究进路的一个分支,主要是模仿人类学习的思维过程而实现自主学习,并做出判断与决策。医学影像数据的日益丰富、医学影像人员的极端匮乏以及数据分析的单调枯燥,使医学影像成为人工智能最热门的方向之一。

●机器学习的发展

机器学习的发展几经沉浮、如今再成热点。逻辑推理和类比联想是人类学习性思维的典型特点。模拟人的思维进行自主学习成为人工智能专家一直努力的方向。1949年,加拿大心理学家赫布(DonaldHebb)在其著作《行为的组织》中首次提出了基于神经心理的学习理论,标志着机器学习领域迈出了第一步。1952年,被誉为“机器学习之父”的塞缪尔(ArthurSamuel)设计了一款西洋跳棋程序,通过模拟塞缪尔本人及其他高手的下棋策略与方法,积累经验和教训,向高明的对手或通过棋谱进行学习,不断提高人工智能水平,终于在1959年击败了它的设计者,并在1962年战胜了美国一个州的跳棋冠军,在世界上引起了不小的轰动。1957年,美国康奈尔航空实验室的罗森布拉特(FrankRosenblatt)利用赫布理论模拟人脑的运作方式,创造了“感知机(Perceptron)”,能够进行简单的文字、图像和声音识别。感知机在20世纪60年代初期曾经盛行一时,据估计至少有近百个研究机构和公司从事感知机的研究与开发工作。

然而,无论是以“跳棋程序”为代表的逻辑符号主义学派,还是以“感知机”为代表的神经联结主义学派,都遇到了各自的技术瓶颈,并受到电子技术水平的限制,不仅使机器学习止步不前,而且使人工智能在20世纪60年代中期至70年末遭遇了第一次寒冬。感知机最大的问题就是对复杂图像的感知能力低、对非线性分类识别问题缺乏有效学习方法。1986年,美国科学家鲁姆哈特(DavidRumelhart)和维伯斯(PaulWerbos)研制出被称为“反向传播”神经网络(BackPropagation,BP)的多层感知机,解决了非线性感知与复杂模式识别的问题,给机器学习带来了新的希望,掀起了基于统计模型的机器学习热潮。

到了20世纪90年代,以BP为代表的浅层学习算法模型进入了黄金时代,各种各样的学习模型被相继提出,并得到实际运用。1990年,美国计算机科学家夏皮雷(RobertE.Schapire)最先构造出一种多项式级的Boosting框架算法。1995,俄罗斯统计学家瓦皮尼科(VladimirVapnik)和丹麦计算机科学家科尔特斯(CorinnaCortes)提出支持向量机算法(SupportVectorMachines,SVM)。1997年,IBM公司的超级计算机深蓝(DeepBlue)战胜堪称国际象棋棋坛神话的加里?卡斯帕罗夫,震惊世界。2001年,美国统计学家布赖曼(LeoBreiman)提出决策树模型(RandomForests,RF)。但是,BP算法也存在着随着神经网络层数的增加而梯度逐渐消失的严重缺陷。2006年,“神经网络之父”欣顿(GeoffreyHinton)提出神经网络深度学习(DeepLearning)算法,解决了这一问题,使图像、视频、语音和音频的处理带来了突破,引燃了深度学习在学术界和工业界的浪潮。2011年,微软公司首次将深度学习方法应用在语音识别领域中,取得了较好的效果。2012年,谷歌的X实验室开发了一种机器学习算法,可以自动浏览和找到包含猫的视频。2014年,Facebook公司开发了一种名为DeepFace的算法,能够识别或验证照片中的个人,其准确度与人类相当。2016年,谷歌旗下的DeepMind公司基于深度学习的算法开发研制了AlphaGo程序,战胜了围棋冠军李世石,掀起了机器学习发展和应用的浪潮。

●AI与医学影像的结合

AI与医学影像的结合起步很早却难有大的突破。医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。自第一张X光片出现后,随着20世纪科学技术的发展,逐渐形成了以X射线、CT、磁共振成像、超声和核医学等为代表的多种医学影像技术设备,成为医疗绝大多数数据的来源。

人工处理的困难与枯燥,使人们很早就想利用AI解决这些问题。1963年,美国放射学家洛德威克(GwilymS.Lodwick)等人提出X光片数字化的方法。1966年,莱德利正式提出了“计算机辅助诊断”的概念(CAD),希望通过计算机来减轻医生的工作负担。1972年,CT的临床使用开创了医学影像数字化的先河。之后,MRI、CR、DR、ECT等数字化医疗设备的产生,推动了医学图像资料的存储、传输系统(PictureArchivingandCommunicationSystem,PACS)的发展。因此,1982年,美国放射学会(ACR)和电气制造商协会(NEMA)决定共同成立一个称为ACR-NEMA的委员会,致力于制订医学影像设备间共同的通信交流规范。1985年和1988年,ACR-NEMA发布了两套规范(ACR-NEMA1.0和ACR-NEMA2.0),并于1993年发布了一套统一的规范,正式命名为DICOM3.0,详细地规定了医学图像及其相关信息的传输协议。

虽然图像存储与传输标准有所发展,但是AI与医学影像的结合仍然困难重重。例如,医学专家系统在诞生后,虽然在20世纪80年代红极一时,但一直难于应用在医学影像领域。造成AI与医学影像难以结合的主要原因是视觉系统成像模糊、人体组织结构或功能的复杂性及传统算法的局限性。2006年,深度算法的出现为图像识别带来突破性的进展。2012年,欣顿使用多层卷积神经网络结构,将图像识别错误率突破性地从26.2%降低到了3%,让深度机器学习进入工业和医疗的领域。2014年,国际知名的医学影像公司Enlitic成立,并开发出从X光照片和CT扫描图像识别恶性肿瘤的软件。2015年,美国西奈山医院使用的一种名为DeepPatient的AI技术,分析该院70万名患者的病历数据,表现十分优异。2017年,美国食品药品管理局(FDA)批准了第一款心脏磁共振成像人工智能分析软件CardioDL。2018年,FDA批准了全球第一款人工智能医疗设备IDx-DR。目前,中国有超过100家医疗人工智能公司,其中约有40家企业属于医学影像AI公司,近千家医院部署的人工智能系统中超过一半是医学影像人工智能系统。

智能机器人与智慧医疗

智能机器人是指具有视、听、触等机器感觉,行动、规划、决策等机器思维,机械手、脚的智能控制结构的机器人,是人工智能的又一个重要研究方向。作为一种新型的人工智能技术,会对整个医疗行业产生深远影响。

●机器人的技术发展

机器人从技术成长的视角看可分为3代:第一代为示教再现型机器人,第二代为具备感觉的机器人,第三代为智能机器人。1959年,第一台工业机器人诞生。1965年,世界上第一个带有视觉传感器的机器人诞生。1968年,美国斯坦福研究所研制的机器人Shakey具备了一定的人工智能,能够进行感知、环境建模、行为规划并执行任务,成为第一台智能机器人。1974年,美国辛辛那提?米拉克龙(CincinnatiMilacron)公司成功开发了多关节机器人。1979年,美国Unimation公司推出了PUMA机器人,它是一种多关节、全电机驱动、多CPU二级控制的机器人,采用VAL专用语言,可配视觉、触觉、力觉传感器,是当时技术最先进的工业机器人。

20世纪80年代,不同结构、不同控制方法和不同用途的工业机器人在发达国家进入了实用化普及阶段,日本把1980年称之为“机器人普及元年”,开始在各个领域推广使用机器人,传感技术和智能技术被广泛应用,智能机器人概念日渐深入人心。1985年以后在日本称为“智能机器人的时代”。短短20年时间,机器人实现了从第一代到第三代的大幅跨越。因此,第三次科技革命也可称为机器人技术发展的“黄金时代”。20世纪90年代,日本泡沫经济破灭、经济萧条,日本机器人市场逐步向全球市场转移,成为拉动日本机器人产业增长的重要力量。进入21世纪后,智能机器人、仿生机器人等新一代机器人纷纷亮相。2010年,日本发那科公司推出了第一台学习控制机器人。2014年,日本推出了高仿真人形机器人等。智能机器人技术和产业进入快速发展阶段。

●医疗机器人

医疗机器人是智慧医疗的重要特征之一。根据用途,医疗机器人大致可以分为外科手术机器人、康复机器人、医疗服务类机器人。智能机器人应用于医疗领域肇始于20世纪80年代。1985年,美国加利福尼亚州放射医学中心研制成功能自主定位的手术机器人(Puma560),协助外科医生完成脑组织活检。1992年,美国IBM公司和加利福尼亚大学联合推出名为Robodoc的机器人系统,协助完成了人工骸关节和膝关节置换手术。1994年,美国ComputerMotion公司研制出第一台商业化手术机器人AESOP,并于1997年完成了世界首例腹腔镜下胆囊切除手术。1999年,美国IntuitiveSurgical公司开发出达?芬奇(DaVinci)外科手术机器人,被广泛应用于普通外科、胸外科、泌尿外科、妇产科、头颈外科以及心脏外科,成为目前国际上技术最为成熟和完备的外科机器人,几乎垄断了外科机器人市场。我国手术机器人的发展较晚。2010年,天津大学、南开大学和天津医科大学总医院联合研制的首台外科手术机器人“妙手A”系统成功问世,有望打破西方国家的垄断。

康复机器人主要用来帮助老年人和残疾人更好地适应日常的工作和生活,主要集中在康复机械手臂、智能轮椅、假肢和康复治疗机器人等方面。1987年,英国MikeTopping公司研制出了一款康复机器人,命名为Handy1,用以帮助一名11岁患有脑瘫的小男孩独立地用餐。2013年,我国上海交通大学成功研制出第一台智能轮椅机器人ROBOY,能对周围环境做出准确判断、自动规划最佳路径。

医疗服务类机器人主要包括救援机器人、转运机器人、医院办公机器人、护士机器人等。1985年,美国TRC公司研制出世界首个服务机器人“护士助手”,不仅能运送医疗器材、药品等,还能为患者提供送饭和送病历、报表及信件等服务,目前已在全球几十家医院投入使用。

此外,人工智能在健康和慢性病管理、急诊流程、就医流程引导等方面有着广泛的应用。随着大数据、物联网、人工智能的发展,人工智能无疑会对人类的未来医疗提供莫大帮助,产生越来越广泛深入的影响,有可能改变医疗模式、重塑医疗产业。生病还要不要看医生?未来医院是什么样的?医疗人工智能事故责任如何认定?这些也同样带给我们无限的想象和深度的思考。

作者:王国强,中国科协创新战略研究院研究员,博士,主要研究方向为科技史、科技政策和科技传播

 

本文来自《张江科技评论》杂志

湖北省协和医院引进首台人工智能诊断系统准确率超九成

2017“人工智能”首次被写入了全国政府工作报告,要求加快培育壮大包括人工智能在内的新兴产业,人工智能开始渗透于医疗行业。据悉,协和、同济、省人民、广州军区武汉总医院都采用了依图医疗的人工智能辅助诊断系统,用于肺癌、乳腺癌、儿童生长发育异常等疾病。协和医院放射科是湖北省使用最早、病例数最多的单位。它究竟带来哪些改变?现状和未来如何?

7月17日,63岁的谢先生因肺部不适在协和医院胸外科就诊,医生建议做肺部CT平扫和增强。将谢先生肺部CT按照1.5mm层厚重建出688幅断面影像。阅片室中,放射科副主任医师黄锐仅仅在影像生成后约3秒后,就找到谢先生左肺中下叶和右肺中下叶共6个肺结节,就连4*4mm的微小结节也没被放过。谢先生被初步诊断为疑似肺癌。黄锐医师再次阅片,确认无误后出具报告。

688幅CT影像,一位医生仔细阅完通常需要5至8分钟。黄锐医师能在数秒之内找到所有结节,并初步判断出良恶性,筛查出这例早癌患者,得益于他的“小依助手”肺癌影像智能诊断系统。这是我省引进的首套人工智能辅助诊断系统。它将肺部影像诊断压缩至秒级,可自动识别出成百上千帧影像中肺结节,标出大小、位置、密度,并初步分辨良恶性,自动生成结构化影像报告提供给医生审查。自去年下半年在协和医院放射科投如使用至今,该系统已辅助医生完成近9万例肺结节筛查,敏感性高达93%以上。

肺结节可能是肺癌的“信号灯”。过去筛查肺结节全靠医生“火眼金睛”,平均一个医生每天看上百个病人、近2万幅CT影像图片,如果还需对比病人既往影像资料,分析量惊人。去年肺癌影像智能诊断系统准备在协和医院放射科投用时,武汉协和医院放射科韩萍教授及其团队医师也曾经半信半疑,最终因为医生工作量实在繁重才决定尝试人工智能。韩萍教授表示:高强度的工作下,人眼识别难免有疲惫和疏漏,影响医疗安全。若是经人工智能初筛后,医生在此基础上再审核确认,可大大减少漏诊,提高效率。

开发公司依图医疗介绍,该系统基于数百份临床权威指南和专家共识以及数百万份经过人工智能解构的医疗大数据而建,投用到医院就是希望它能在临床中学习,提高诊断水平。该院放射科主任韩萍教授、史河水教授及其团队评价该系统“较聪明,一学就会”。初来乍到时,为保证其受到良好的培训,只有高年资的医生才使用该系统,系统每一次阅片,医生都会肯定或纠正其诊断结果。在近9万例的病例学习后,该系统就像一个医学生在临床学习中积累了一定的经验,正在逐步成长为一名合格的医生,即使一些靠近肺部纹理或血管等较难鉴别的结节,它也能识别出。

人工智能在医疗领域的落地能一定程度上弥补医疗资源短缺。影像作为医生诊断的重要依据,在医疗行业数据中占80%~90%。有统计显示,我国医学影像数据增长率为30%,而放射科医师增长率仅4.1%。运用人工智能技术可以有效弥补医生的缺口。曾有某人工智能系统判读病理切片时,准确率达到92.5%,与之相比,高级医生的准确率是97.5%,普通医生仅为57.5%。人工智能深度学习后,可以达到高级医生的水平,实现同质化医疗,协助提高基层医院医疗水平。

当记者问到:协和医院放射科的人工智能系统也正在自我学习中,未来能否完全替代医生?韩萍教授把握十足地说,没有一点担忧。她认为,目前人工智能诊断系统仅限于一种或几种疾病的辅助诊断。在遇到疑难病例的时候,人工智能则失去方向。况且肺部疾病众多,人工智能系统远未涉足,它还需要长时间的学习。当然,我们看好人工智能,我们相信随着科技和医学的进步,医生将和人工智能一起,探索人类医学的边界。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇