人工智能实习(关于人工智能的实训报告)
导读关于人工智能的实训报告人工智能的定义是让机器实现原来只有人类才能完成的任务,其核心是算法。当然一方面人工智能的确是未来的方向,而另一方面则是因为人工智能…关于人工智能的实训报告人工智能的定义是让机器实现原来只有人类才能完成的任务,其核心是算法。
当然一方面人工智能的确是未来的方向,而另一方面则是因为人工智能有可能是科技圈中的下一个黑天鹅。说不定什么时候,一只独角兽就会从中诞生。
但在此之前,一定要正确的认清什么才是真正的人工智能。
伪人工智能横行
现在大多数人工智能都属于伪人工智能。为什么这么说,可以从以下两个方面来解释。
第一,人工智能不是一下就能做出来的,需要时间以及实验的积累。
而做出人工智能的这些人才也是一样,他们需要切实的接触到真正的人工智能当中,不过这样的人才在全世界也就寥寥几百个。
但是好像在一瞬间,在中国就有几万个人工智能方面的人才被选拔了出来,可想而知这样的人才是真正的人工智能专家吗?
这些人才往往被大公司冠以年薪30万或50万疯抢,虽然里面的确有很多优秀的人才,但是这样未免显得太过着急。从人才培养角度来看,人工智能领域还存在着大量的泡沫。
第二,许多项目只不过是换了个‘马甲’。
许多创业公司喜欢为自己的项目贴上一个标签,这样的话不但可以吸引眼球,更能得到投资人的青睐。
虽然不能说这种做法是错误的,但这显然也不是真正的人工智能,甚至会误导其他人对于人工智能的认知。
比如许多项目在贴上人工智能标签之前非常简单,只是一些如同机器人学习,或者算法研究之类的项目,如今摇身一变全都成为了人工智能。
什么才是真正的人工智能?
我们既不是专家,也不是专门研究这种领域的学者,有没有简单的方法直接辨别什么是人工智能,什么是伪人工智能?
答案是有的。
举一个简单的例子,之前人们也尝试教计算机下国际象棋。计算机经过学习之后,与人们依然互有胜负,在最终完全战胜人类的时候,时间已经过去了10年。
而谷歌的AlphaGo,从什么都不会到围棋中不可战胜的存在只用了短短一年的时间。
由此可以看出,真正的人工智能体现在其卓越的学习能力。
如果你隔一段时间,大概3个月左右去看一个算法的进步,比如面部识别,如语音识别,如果该算法进步只是代数级,没有达到指数级,那么这种算法可能更多的是机器学习,还未达到人工智能水平。
既然已经辨别了什么是真正的人工智能,那么对于人工智能而言,什么才是最重要的。
可能有些人会说算法,有些人会说设备,有些人会说编程技术。虽然它们也是构成人工智能中重要的一环,但是这些都不是最重要的。
对于真正的人工智能而言,最重要的永远是大数据,只有拥有完整的数据,人工智能才能真正的发展起来。就像是一把宝刀,需要有一块好的磨刀石才能让它更加锐利,而大数据恰好就是这块最好的磨刀石。
就像是谷歌的AlphaGo,有人说为什么AlphaGo不去下象棋,而是只在围棋领域中称雄呢。
AlphaGo的专家则表示,不是他们不想这么做,而是无法这么做。因为在围棋中,日本人一直以来有保存棋谱的习惯,在每个棋谱上都标注了什么是第1手,什么是第100手,这样很容易被AlphaGo学习。
但是对于象棋来说,自古以来大多数都是残局。虽说残局也很精彩,但是对于AlphaGo来说,它不知道残局形成的原因,对之前的步骤一无所知,这样就会对它的认知造成障碍。
这也说明,完整的数据对于人工智能多么重要。任何抛开数据谈人工智能的,全都是耍流氓。
人工智能中的独角兽
目前,中国的大部分数据全都被BAT所掌握着,国外则是Facebook、Google、亚马逊之类的企业。对于创业者而言,想要打破数据的垄断具有相当大的挑战,但也不是没有机会。
比如说医疗数据,BAT就还没有形成垄断。金融方面数据,更多的掌握在金融公司手中,这些互联网企业也没有。
在这两个领域,不管你的技术水平如何,至少在数据方面是在同一起跑线上,这对于创业者或后进入的公司是一个难得机遇。同时,下一个巨头也有可能在这两个领域诞生。
就拿医疗来说,国外已经有许多家企业与医院达成协作,直接读取医院中的病例以及X光片或者CT片。
医生一天看10张并且分析出症状都已经是非常有经验了,而人工智能,则可以在1个小时内看10万张,效率不可同日而语。
对于医生而言,诊断病因需要基于自己的经验积累。但是对于人工智能来说这就太简单了,通过图像和最终诊断结果的闭环学习,人工智能很快就能对X光片或CT片进行病因分析。当然这一过程需要不断完善,才能提升正确性及智能化。
在国外由于隐私保护非常严密,很多数据无法开放,因此无法做到大量数据录入。
但是由于如今中国民众对于隐私保护还没有那么严格,因此中国企业还是有机会在这个领域中实现超越的。
只要
一、交通运输
1、物流
所有流动运输中的设备都通过智能标签发送定位信息、设备标识码、状态到物联网中,以便统一调度、指挥。
智能物流系统:是在智能交通系统和相关信息技术的基础上,以电子商务方式运作的现代物流服务体系。
智能物流系统:通过智能交通系统和相关信息技术解决物流作业的实时信息采集,并在一个集成的环境下,对采集的信息进行分析和处理。通过在各个物流环节中的信息传输,为物流服务提供商和客户提供详尽的信息和咨询服务的系统。智能物流系统包括:物流运输机器人(无人机、无人驾驶快递汽车)、物流导航、控制、调度。
2、城市交通
智能交通系统:是将先进的信息技术、通讯技术、传感技术、控制技术以及计算机技术等有效地集成运用于整个交通运输管理体系,而建立起的一种在大范围内、全方位发挥作用的,实时、准确、高效的综合的运输和管理系统。
智能交通系统的应用范围:包括机场、车站客流疏导系统,城市交通智能调度系统,高速公路智能调度系统,运营车辆调度管理系统,机动车自动控制系统等。
无人驾驶汽车:特斯拉。
3、智能停车场
智能车牌识别系统主要是由:摄像头、控制程序、嵌入式硬件和停车栏杆控制系统组成。
港珠澳大桥珠海口岸配套的停车场,采用人工智能识别、导航寻车系统。包括停车场+车牌识别/卡片系统、视频车位引导+反向寻车+线上打折及缴费系统等,三个区域停车场共计18个车道,约2500个车位。由智慧城市公司打造的智慧停车系统,整合了智能硬件、视频识别、车位引导、室内定位、云平台等技术,实现了便捷停车、线上缴费、车位引导、自助寻车、动态导航等功能。
4、快递。
智能快递分捡系统、智能快递柜。
二、安全系统
1、安防监控
智能门禁系统:用人脸识别、指纹识别开门。
2、安检识别
智能安检仪:基于银河水滴自主研发的深度结构表达模型,通过大量的样本学习、训练,自动识别液体、管制刀具、枪支等违禁品并报警,辅助安检人员进行快速准确的违禁品识别,提升安检速度。
对地铁轨道与隧道进行智能巡检。该检测车打破国外技术垄断,拥有完全自主知识产权,集成钢轨及锁扣缺陷检测、钢轨内部缺陷检测、车辆限界检测、隧道环境异常检测、接触网缺陷检测、轨距检测等六大功能。
三、社会交流
1、识别系统:人脸识别、语音识别、指纹识别。
2、人机互动:图灵机器人、棋牌机器人、主持机器人、语音翻译机器人。
3、智能创作:新闻稿件写作、音乐、绘画。
四、服务系统
1、家庭服务早教机器人、儿童乐高机器人、伴侣、早教、家务、马桶、医疗保健、远程监控、盲人导航。
2、共公服务主要运用于银行、餐厅、博览馆、超市、机场等公共场所的迎宾服务,高速公路交警机器人、收费机器人。
3、智能家居
炒菜机器人、扫地僧机器人、家庭背物机器人、室内送物机器人。
五、工业机器人
1、智能检测
人工智能就是神经网络,AI芯片就是神经网络芯片。人工智能整体核心基础能力显著增强,智能传感器技术产品实现突破,设计、代工、封测技术达到国际水平,神经网络芯片实现量产并在重点领域实现规模化应用,开源开发平台初步具备支撑产业快速发展的能力。
智能检测识别信息技术,涉及光电检测、核磁共振、红外紫外、生物识别、基因检测诊断等专业技术,广泛应用于工业、交通、金融、军工、公共事业、医疗、环境监测等领域。
智能识别及分析技术的主要应用方向,包括高速机器视觉、数据智能分析等。机器视觉技术是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。智能分析是人工智能的重要分支。
2、自动化机器人
工程挖掘机器人、水下机器人、航拍无人机、农业喷淋农药无人机,装卸机器人、水下打捞机器人、生命探测机器人、地下钻井机器人。
3、步态识别
步态识别,是指通过身体体型和行走姿态来分析人的身份,其物理基础是每个人不同的生理结构,如头型、腿骨、肌肉特点、步幅等。
目前,银河水滴拥有全球最先进的步态识别技术和最大的步态数据库。
与指纹识别、人脸识别、虹膜识别比较,步态识别最大的好处就是非接触、远距离。
中国现在已经有3000万个摄像机,并且每年增长20%,因此,在安防、安全监控方面大有作为。
当出现远距离、非配合、全视角(只有侧面和背面)、光线弱、有意遮挡面部、多次换服装等情况时,用步态识别技术进行搜检几乎是最优或唯一的选择。
六、智能围棋手
阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发,其主要工作原理是“深度学习”。
2016年3月份,AlphaGo与李世石的那场围棋人机大战,在科技界和围棋界产生了深远的影响,引爆了人工智能的火花。
2017年5月其与排名第一的世界围棋冠军柯洁的对战,又将人工智能技术推到了普通公众视线中。
七、智能教育
机器人保育员、机器人讲课员、机器人教师。
八、智能视觉
航拍
人工智能实验报告总结我们正处在一个振奋人心的科技时代。5G、人工智能、边缘计算等前沿技术的快速融合与迭代,推动了基础理论科学的实践应用,也加速着传统汽车产业的智能化、网联化变革。
在智能网联这个汽车、科技、通信等产业深度融合的代表性应用领域,进化更是每分每秒都在发生。回顾2019年,真实复杂路况下的驾驶数据成为自动驾驶落地的源动力;车路协同方案在政府与企业的共同推动下进入真正的落地应用阶段;5G通信的正式商用在为前两者摁下快进键的同时,也开启了车联万物(V2X)场景化应用生态繁荣的更多可能性。
自动驾驶:数据即生产力
在经历了整整十年的起步、成长、波折与攻坚之后,自动驾驶在2019年取得了可观的进展。
一方面,针对低速、封闭、路线固定的特定驾驶场景,自动驾驶方案商们开始提供丰富可落地的技术解决方案;另一方面,随着自动驾驶系统的接管率越来越低,性能越来越强,真正意义上的无人驾驶也在2019下半年再次成了热门话题。这一次,全球自动驾驶圈在技术路径上达成了共识:数据即生产力。
自动驾驶的底层技术是AI,定义AI能力的是深度学习机器,而深度学习机器又以万物互联时代的数据为基础——只有海量驾驶数据,才能为自动驾驶深度学习机器提供多样性的数据样本。真实驾驶场景中意外、不可预知的数据,是自动驾驶准确率从95%到99.9999%的必备条件,再强大的仿真模拟测试也无法替代。
人工智能实验总结1、无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。
中国自主研制的无人车——由国防科技大学自主研制的红旗HQ3无人车,2011年7月14日首次完成了从长沙到武汉286公里的高速全程无人驾驶实验,创造了中国自主研制的无人车在一般交通状况下自主驾驶的新纪录,标志着中国无人车在环境识别、智能行为决策和控制等方面实现了新的技术突破。
2、智能音箱
智能音箱是传统有源音箱智能化升级的产物,是指具备智能语音交互系统、可接入内容服务以及互联网服务,同时可关联更多设备、实现对场景化智能家居控制的智能终端产品。智能音箱集成了人工智能处理能力,能够通过语音识别、语音合成、语义理解等技术完成语音交互。
智能音箱是智能家居的组成部分之一,智能音箱的功能延伸与智能家居产生了密切联系。如果把智能家居看作是一个智能生活系统的话,那智能音箱就是人工智能管家,是核心操控者。
3、人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
4、智能客服机器人
近年来智能机器人技术不断发展和成熟,智能机器人被应用于金融、财务、客服工作等领域,其中,智能机器人在客服工作中的应用效果最为显著。它通过自动客服、智能营销、内容导航、智能语音控制等功能提高了企业客服服务水平。
智能客服系统是在大规模知识处理基础上发展起来的一项面向行业应用的,适用大规模知识处理、自然语言理解、知识管理、自动问答系统、推理等等技术行业。相较于传统人工客服,智能客服可以7X24小时在线服务,解答客户的问题、降低客服人力成本和提升用户网站活跃时长。
5、医学成像及处理
AI在快速医学影像成像方法、医学图像质量增强方法及医学成像智能化工作流图等方面均有突出表现。随着医学影像大数据时代的到来,使用计算机辅助诊断技术对医学影像信息进行进一步的智能化分析挖掘,以辅助医生解读医学影像,成为现代医学影像技术发展的重要需求。
人工智能实践报告人工智能是人类通过反复的实践活动及论证,运用数据分析和逻辑思维,按照编程的顺序完成某一任务而制造的机器人。
机器人的闻世其实就是人类的意识思维的结晶。在制造的过程中,人类要将逻辑思维的推理通过实践来检验和求证,求证的过程中也存在不断实践的方法,所以人工智能的过程中同样存在从实践到认识又从认识到实践的反复过程。
最后才制造出具有较为生命力的机器人,这就是实践和认识的辩证关系。
人工智能实训内容人工智能教育不是为了培养少数高智商的创新天才。中小学开设人工智能课程,旨在培养学生适应未来智能社会发展需求的能力,让他们能够利用人工智能技术工具解决学习、生活中的问题。
因此,人工智能教育应该是面向所有学生的普惠性教育内容,区域、学校应以全纳的态度为学生提供接受人工智能教育的机会,让每个学生都能成为合格的智能时代公民。
关于人工智能的实训报告总结小学阶段:图形化编程了解程序流程,培养计算思维了解人工智能的概念,体验人工智能在生活中的应用。
初中阶段:了解算法的概念,学习代码编程能够利用简单算法解决生活中的问题,能不用代码处理大量的数据。
高中阶段:理解机器学习的概念,能够测试已有的一些人工智能学习算法,并能够利用大量的数据来训练某种机器学习的模型。
人工智能应用实训报告随着数据的生产和存储量呈指数级增长,人们将开始看到人工智能系统的适应和改进。
虽然人工智能从业者可能对数据量有合理的处理,但大数据环境中的变化速度仍然是某些人工智能应用程序的重要问题。
数据准确性是另一个越来越重要的问题,特别是对于分类方法和其他无监督的人工智能方法。数据是必须建立任何技术(尤其是人工智能)的基础。错误的数据基础(例如使用包含偏差或被错误操作的数据)通常会导致错误的技术方法产生错误的见解,而且可以通过压力以消极的方式得到强化。