人工智能时代,人力资源如何真正走向大数据分析
(原标题:人工智能时代,人力资源如何真正走向大数据分析)
在被数字技术,智能技术充斥的新时代,企业竞争越发激烈。其竞争的根本是人才的竞争,利用大数据技术进行人力资源分析,整合与发挖内部人力资源,找到人才竞争优势,是每位HR的当务之急。
人力资源数智化变革需注意两个变化
人力资源大数据分析即数智型人力资源管理,是以智能的方式利用数据并从中获取洞察力,这些洞察力不仅可以提高公司内部人员的绩效,还有助于公司整体成功。数据可以说明过去,数据也可以驱动现在,数据更可以决定未来。
环顾企业内部运营与管理,财务、生产、研发、营销已经习惯于用数据来说话,但还保留着一块传统区域,就是人力资源管理。换言之,多数优秀企业数智化转型已见成效,人力资源部落后于其它部门,数智型人力资源管理转型已迫在眉睫。
而且可以发现,HR部门转型咨询的热情非常高涨,呈井喷趋势。既使在今年疫情期间,用友已与上百家企业HR共同探讨人力资源大数据分析以及数智型人力资源管理转型建设思路。国内企业人力资源管理将经历一场变革,传统的流程驱动模式正在被这波数据分析驱动所取代。这个变革过程,企业需要关注两个演化。
一、技术演化:智能机器人促进了更高程度的自动化,每个HR和员工都应有智能助手,越来越多的新技术应用于智能机器人上,如自然语言识别、智能语音交流、意图识别、风险预警、预测分析、情绪分析、文本分析、视频分析、图像分析、声音与语音分析、机器学习、深度学习等等,从而提升HR在潜能分析、人才获取能力分析、领导力分析、工作有效性分析、人才流失预警与分析、企业文化分析、员工绩效分析等方面的能力。
二、人力资源职能演化:如果有人说自己完全确定数智型人力资源管理的发展方向,那都是在撒谎。科技的进步是我们现在无法想象的,但是我们可以根据一些新兴的趋势对未来可能出现的一些情况做一些预测。HR需要拥抱新技术和更强的数字化、智能化,当日常的、琐碎的事务性工作被自动化后,人力资源管理团队就会释放出来,专注于能为企业带来更大价值的、更具战略性的工作中。
“价值分析”是人力资源数据分析的本质
数据分析可以为数智化转型插上翅膀,很多时候数智化转型不光提高信息效率,更多是能够通过数据分析发现管理价值。在人力资源管理和运营过程中,梳理出尽可能多的指标,将指标罗列出来,并进行统计和可视化,用很炫酷的驾驭仓仪表盘清晰的表达出人力资源运行的效率、效能和价值。
德勤的一份研究报告显示,那些增加人力资源数据分析投资的公司正“以双倍的速度改进招聘工作,以3倍的速度提高他们的领导力发展能力,且平均股价比一般公司高出30%”。有一句话应该被铭记:我们经常忘了,你投入时间进行分析,不是为了获取结果,而是为了获取洞察。
人力资源数据分析的核心是价值分析,它重点体现在纵向深度价值分析以及横向业务驱动分析。纵向深度价值分析我们以离职率分析为例来说明,如“离职率=离职人数/(期初人数+入职人数)”或“离职率=离职人数/(期末人数+离职人数)”(很多人都会把这个公式弄错或者弄反了,会把分母当成期初人数加期末人数除以2,这是错误的)。离职率的数据分析怎么样体现它的价值层次呢?
首先是整体的离职率,比如说我们公司离职率10%,你向总经理汇报,总经理说你这个数据不行,我们公司一共4个副总已经走了三个了,副总这一级别的离职率75%。这类宏观数据实际价值是有限的,比如说平均年龄,平均并不能体现一家公司的这个年龄特点,平均房价也不能体现一个城市的房价的特点。可见,笼统数据不能体现问题,颗粒度变小才能发现问题,要将数据细分,如分类、分层、分时段、分人员、不同工龄、不同性别,不同年龄段的离职率分析,
第二层是细分人才离职分析,如关键人才离职分析,公司4个副总走了三个,这都是关键人才,他们的离开会对公司造成比较大的影响,我们需要去分析主动离职的影响因素,尽可能将关键人才挽留下来,或避免这类事件频繁出现,关键人才离职率有个变异指标叫关键人才留任率,这其实是一种管理思维的转变。
第三层,比人才留任率更好的一个统计指标叫离职预测分析。依据离职要素与离职关键行为分析进行离职预测分析,随时大数据技术的广泛应用,机器学习、深度学习能为HR所用,如利用随机森林算法、Boosting算法等算法模型进行离职倾向性分析,通过一定时间的算法模型训练后,预测的准备度是非常高的。
横向业务驱动分析主要是从业务目标出发,观察员工的行动、决策与行为模式,以及其行动与决策对业务目标的影响关系,找到关键成功要素,进行人才与业务驱动因素分析、激励与留任因素分析等。
人力数据分析成熟度模型与成长路径
人力数据分析的好处和价值显而易见,但并没有成为主流,仅有一小部分公司全面开发了她们的人力数据分析能力,为什么HR部门数据分析能力落后于组织内其它部门呢?这个问题的答案会比较复杂,可以概括为两个方面原因:一是技能缺乏。传统HR部门缺乏数据分析所需的IT和分析技能,让很多组织在推行人力数据分析方面举步为艰。HR完全可以从内部发挖具备数据统计能力的员工,为我所用;二是“布德罗之墙”。HR擅长于描述性分析报告,如假勤统计、绩效分析、结构分析等,这些描述性分析都很容易进行,一旦HR想开展预测性分析和指导性分析就撞上了一面“墙”,这面“墙”在2010年被布德罗和卡西奥最早所提及,从此被称为“布德罗之墙”,HR难以逾越“布德罗之墙”是因为,一方面,来自组织内部多套系统的数据需要融合在一起,才能更好的分析;另一方面,实际的分析还需要更高阶的数据分析方法。
“布德罗之墙”说明了HRM必须经历一些阶段来发展数字分析能力。为了帮助组织提高人力数据分析成熟度,德勤咨询顾问乔治.贝辛(JoshBersin)创建了四级人才分析成熟度模型,对于HR很有参考意义,可以帮助组织识别目前所处的水平,以及需要如何做才能开发出成熟的人力数据分析能力。
人力分析成熟度模型
第一层级:运营报告,56%的组织处于人才分析成熟度的第一层级,HR部门的工作局限在传统的运营性报告上,如人员编制、离职率、人工成本、培训成本等,一套良好的人力资源管理系统可以帮助组织保持员工记录的准确性和一致性,运营报告可以快速、自动生成,这样HR也可以将更多的时间花在更具战略意义的工作上,然后努力向下一层级提升。
第二层级:高级报告,大约有30%的组织处于这个等级,HR能够主动提供多角度视角、并足以影响决策的报告。此阶段可通过数据仪表盘(领导桌面)为中高层展示HR指标,此阶段要谨慎,不要投入太多时间去建立新的HR指标,应该聚集在能够为业务挑战带来真正价值的指标上,直面问题,清晰的数字仪表盘有助于将HR指标转化为有用的决策依据。
第三层级:高级数据分析,此时你的组织已经进入最顶尖的14%之一,HR使用建模来解决业务难题,甚至能基于数据预测未来,HR通过高级数据分析,可以积极的识别问题,帮助组织有效降低风险,有力的开展人力资源规划和人才供应链建设。
第四层级,预测性分析,大约只有不到4%的组织到达这一层级,HR部门需要专职的数字分析师来做预测建模,其技术含量已远超出简单的数据分析。预测模型需要智能平台的支撑,通过机器学习、深度学习的算法模型来执行预测性分析,如用工需求预测、高潜预测、离职风险预测等等,此时HR在组织的战略决策中发挥着重要作用,能够识别出人力政策对战略的影响,HR在公司内部扮演着具有战略意义的角色。
加速提升人力数据智能化分析能力
智能化、数字化技术已广泛应用于企业管理与商业活动,企业的商业模式、产品与服务、运营与管理体系均面临转型升级的挑战与机遇,人力资源管理如何快速提升数字分析能力,由成熟度模型第一层级快速向第四层级提升,成为众多HR从业人员的第一要务,那么如何能够做到快速提升呢?
大数据、人工智能等新技术已全面融入我们的工作与生活。在人力资源数据分析领域,也能够借助新技术的力量为HR赋能。用友作为中国最大的企业云服务和软件提供商,也是中国优秀的数字人力解决方案提供商,已经为众多国内外企业提供人力资源数智化转型与系统平台落地服务,帮助企业进入人力数据分析的快车道。
很多企业以项目的形式来开展人力数据分析推进工作,在起步阶段,非常重要的环节是整体规划与顶层设计,根据企业自身特征,准确定义人力数据分析的目标、价值和应用蓝图,为此项工作指明方向。同时设计持续、高效、清晰的建设路径,每个阶段建设内容环环相扣。另外人力数据分析工作的开展,需要与人力业务提升、HR系统完善同步开展,即人力数据分析可以驱动人力业务与HR技术平台的整体提升,从而持续完成数智型人力资源管理转型的阶段目标。
我们以某集团为例,为大家分享人力数据分析建设过程的关键环节。
一、数智型人才管理平台优化升级
与传统HR信息系统不同,用友数智化人才管理平台更强调的是全员应用、智能连接、数据驱动,卓越体验。其核心要素是:连接、智慧、体验和开放。即通过数据化移动工作台连接人与人、人与组织、人与事,在连接过程中加入智能技术,如意图识别、逻辑判断、智能推荐、情感分析、行为分析、OCR、人脸识别、数字孪生、AI、深度学习等,让连接更紧密、更高效、更具有粘性。同时,基于数字技术,能够充分为员工授权,同时更愉悦的使用体验设计,能够激发员工的正向情绪,驱动全体员工充分发挥才能,激发潜能。数智化人才管理平台非常重视生态连接、社会化商业与定制化能力,维护人力资源生态的开放性,这即满足新时代人才管理的诉求,也能充分体现HR部门的服务能力。
二、总体规划和顶层设计
总体规划和项层设计是做好这件事的开始,指明人力数据分析的方向、目标和实现路径,避免头疼医头、脚疼医脚式的资源浪费。分析目前大多数企业现状,人力系统平台、数据积累、统计分析都有一定的基础,不能仅仅参考人才分析成熟度模型来规划目标和划分阶段,人力数据分析与智能化技术应用、人才管理相应同步开展,本身做高阶层的数字分析需要相关业务开展的支撑。
总体规划和项层设计需综合人力资源信息标准、基础数据、业务动态数字、发展状态、组织问题、人才问题等企业自身特点来制定,并没有标准答案。以下以某集团为例,介绍人力资源分析的总体规划和项层设计。
阶段一:数据人才管理L1,搭建起集团人力资源数字化、智能化总体规划,建设智能数据分析基础平台,从人才视角、智能应用升级切入,业务内容包括人才画像、人才盘点、岗位画像、人岗匹匹配分析、领导桌面、智能化员工服务。
阶段二:数据人才管理L2,分析内容扩展到组织视解,基于内部数据、历史数据、外部数据进行高级数据分析,内容包括组织画像、组织效益分析、智能机器人、员工体验智能升级、业务智能化升级。
阶段三:数据人才管理L3,分析内容提升到预测分析,支撑人才管理更高阶业务开展,内容包括预测分析(用工需求、离职预测、高潜预测)、人才发展管理智能升级。
阶段四:数据人才管理L4,预测分析优化及更广泛应用,数字孪生,内容包括预测分析全面应用与优化、人力规划模型、智能机器人陪伴式服务、数字孪生。
三、最佳实践成果导入,快速启动人力数据分析
规划和设计人力资源数字分析结构非常重要,可以参考人才分析成熟度模型框架,从运营报告、高级报告、高级数据分析、预测性分析四个层面,遵照纵向深度价值分析、横向业务驱动分析原则,设计组织人力数据分析结构和分析指标,并对每个指标从数据来源、实现技术、计算公式、应用方向、业务价值等进行完整定义。
HR可以借鉴以往经验或专业服务商实践积累,引入优秀企业人力资源数据分析结构与指标,快速启动数据分析工作,在应用实践中再不断提升HR部门数据分析能力。
四、分析成果初见成效,让优秀的人浮出水面
经历前面三个关键环节,能够在较短时间内产出人力数据分析成果,如人才画像、人才盘点、岗位画像、人岗匹匹配分析、人力投资回报分析(领导桌面)等,为HR部门数字分析能力及业务提升打下良好基础。
人力资源数据分析助力HR直面挑战
人力资源数字化、智能化转型势在必行,其发展速度和影响深度远超出HR的想象,未来无论是人力资源部还是整个企业,都将会呈现更高程度的自动化,如果所有一切都可以自动化并由机器人来执行,那么人力资源部又发挥什么作用呢?因此今天的人力资源管理者需要考虑人力资源管理未来的样子,这包括哪些可以自动化,哪些不能自动化。人力资源管理的角色无疑将从更多与人员管理相关的事务性工作转移到帮助组织实现业绩目标的工作上,为组织提供真正的价值和独特的效益。
人力资源数据分析,即数智型人力资源管理能够准确、及时的告诉组织“我们的人才缺口是什么”、“我们所需的关键人才在哪里”、“是什么造就了我们公司的优秀员工”,“哪些员工最有潜力”等,真正意义上实现“以人才驱动组织战略发展”!
人工智能时代,机器人都干活了,劳动教育还有必要吗答案是……
原标题:人工智能时代,机器人都干活了,劳动教育还有必要吗?答案是……2018年教师节,习近平总书记在全国教育大会上强调要“要在学生中弘扬劳动精神,教育引导学生崇尚劳动、尊重劳动,懂得劳动最光荣、劳动最崇高、劳动最伟大、劳动最美丽的道理”。
进入人工智能时代,一些体力劳动岗位将可能被机器所替代。在新时代,劳动的概念发生了怎样的变化,该如何重新认识劳动教育?
3月月7日,全国政协委员、安徽省政协副主席、安徽省教育厅厅长李和平,中国教育学会学术委员柳夕浪做客中国教育报“两会E政录”融媒体访谈,就此话题阐述了他们的观点并提出许多建设性意见。
李和平(中)、柳夕浪(左)
柳夕浪:我觉得到了必须加强劳动教育的时候了。改革开放40多年来,社会财富不断增加,现在的儿童、青少年生活在物质条件比较富裕的环境里,有些孩子从小衣来伸手饭来张口,逐渐养成了好逸恶劳、不爱劳动、不珍惜劳动成果的习性,并且受到一些社会不良风气的影响,贪图享乐、期望不劳而获。
同时有些人认为,人工智能时代到来后,机器人可以代替人干活,人就可以少劳动,甚至不劳动了,这是一种非常错误的认识。对一个家庭来说,坐吃山空富不过三代,对于一个国家来说,劳动致富、富民强国,这是一个必要的基础,没有这个基础,其他的什么也谈不上。
我们曾经把劳动分为体力和脑力,从现在的角度看,这种分类意义不大,任何体力劳动都包含着脑力劳动。而任何脑力劳动都有体力的参与,我们的认识特别是体验性认识是全身参与的。
关于劳动教育,存在不少认识误区。
第一个误区,就是把劳动教育简单等同于干活。干活是劳动但不一定是劳动教育,劳动教育必须选择适合的劳动项目,对劳动的过程进行必要的设计,使之具有明确的育人价值导向,特别是要注重引导学生在劳动过程中形成正确的劳动价值观,这是最为重要的。
把劳动教育等同于简单的干活,很有可能导致有劳动没有教育,甚至是反教育的,经过劳动以后学生反而厌恶劳动了,这是最大的失败。
第二个误区,就是把劳动教育简单等同于技术教育。掌握一定的劳动技能是劳动教育的目标之一,但不是全部。劳动教育应该以技术为载体,充分挖掘技术的育人价值,对学生进行劳动素养的教育。劳动教育是面向每一个人的普通教育,不是特定的专业职业技术教育,两者是有区别的。
李和平:劳动教育的核心是通过劳动培养学生的一种素养,在思想观念上,要尊重劳动,要热爱劳动、勤于劳动、善于劳动,这个中间除了技能,更有很多价值判断。通过劳动获得在智育和体育过程中得不到的体验,从而把人的综合素质提升到一个新的高度,这就是现代人的需要。
刚才说到人工智能时代很多事让机器做了,我认为这丝毫不影响我们的劳动和劳动教育。在人工智能条件下,确实有很多事情机器可以替代人,但是这个过程中,一定不会没有劳动的空间,特别是创造性劳动,这个是机器替代不了的,而且会越来越重要。而从教育而非工作的角度看,劳动教育的功能更是人工智能所不可取代的。(中国教育报记者汪瑞林通讯员赵黎明编辑欧媚)返回搜狐,查看更多
责任编辑:智能时代的教育创新趋势与未来教育启示
一部人类文明史,就是教育和科学相互激励、相互促进的历史。纵观工业革命以来的人类社会发展历程,时代变迁总是伴随着重大产业变革和经济社会的跨越式发展,而主导时代变迁的源泉则是科技进步。当前,新一轮科技革命正风起云涌,以人工智能为代表的前沿技术对人们的生产生活产生了重大影响,加快推动人类社会迈向人机协同、跨界融合、共创分享的智能时代。
智能时代,新一代信息技术进入创新密集期。中国应抢抓机遇,积极推进前沿技术与教育教学的深度融合,促进教育理念、教学方式和管理模式创新,为实现教育公平、建设高质量的教育体系以及构建更加开放、包容的终身学习体系夯实基础。新冠肺炎疫情对全球教育体系造成了严重冲击。受疫情影响,全球大部分学校被迫关停,约190个国家暂停了线下课程,超过15亿学生的教育进度受到影响,在线教育成为实现“停课不停学”的唯一选择。在大规模在线教育实践中,现代信息技术不仅发挥了重要支撑作用,同时还引领着未来教育的创新与变革。后疫情时期,面对更为复杂多变的国际国内形势,为确保教育现代化目标任务的实现,我们迫切需要认真反思传统教育体系存在的不足,积极推动信息技术与教育教学的深度融合,加快构建面向未来的教育新生态。研究在对智能时代进行界定和分析的基础上,基于《面向智能时代:教育、技术与社会发展》一书中的团队研究成果,总结提炼智能时代教育创新与变革的十大趋势,并根据智能时代教育创新特征及教育本质,进一步获得研究未来教育的五点启示。
一、智能时代呼唤教育创新与变革
(一)迈向智能时代
人类社会的发展大致经历了农业时代、蒸汽时代、电气时代和信息时代。时代更迭具有三大显性特征:一是科学技术的发展奠定了不同时代的生产力基础;二是生产要素随着时代更迭不断演进,而新生产要素的形成,会驱动人类社会迈向更高发展阶段;三是生产力的飞跃也带来生产关系的重大变革,并引起社会生活各领域发生重要变化。
1956年举行的达特茅斯(Dartmouth)会议被认为是“人工智能”诞生的标志。步入信息时代后,互联网技术的发展和高性能计算机的出现,加速了人工智能的创新研究,也促使其从研究走向应用。近十年来,在新理论和新技术的驱动下,人工智能呈现蓬勃发展态势,产业链条逐步形成、集群发展态势显著、溢出效应日益突出。在人工智能引领下,大数据、云计算、物联网、区块链、5G等新一代信息技术加速突破应用。这些前沿技术不断颠覆传统生产模式、组织方式和产业形态,推动传统产业转型升级、新兴产业发展壮大。同时,前沿技术已从互联网领域渗透至传统行业,其应用场景日益丰富、应用价值不断凸显,在包括教育在内的多个服务行业已经有了较为成熟的应用,极大促进了人们工作和生活的智能化。
前沿技术的创新与应用也推进了经济的数字化转型。当前,全球数据呈现爆发增长、海量集聚的特点,以大数据为代表的信息资源已成为重要的战略资源和新生产要素,并和其他要素一起融入经济价值创造过程,推动生产力变革。生产力的发展也促进了生产关系的变革。随着互联网技术的普及,人们开始降低对传统单一生产资料的依赖,而转向多元化的劳动输出,雇佣关系从紧耦合变成了松耦合。人机协同、跨界融合与共创分享的新型发展模式,也使人们摆脱了机械与繁杂的工作,可以基于自由意志展开个体之间的分工、合作与创作。前沿技术还驱动了知识的高效生产、传播和应用,促进了财富积累方向由资本转向知识,不仅急剧提升了财富增长的速度,也增加了收入分配格局调整的灵活性。因此,相比信息时代的计算机和互联网,以人工智能为代表的驱动生产力变革的新技术已经出现,催生了新的生产要素、改变了传统生产关系。历史发展和实践表明,我们正迈向或已经进入了一个由人工智能技术为引领的智能时代。
如果将时代更迭、技术进步与经济周期联系在一起,通过对工业革命以来全球经济增长五次长波的考察,亦可佐证我们的观点。1939年,著名经济学家、创新之父熊彼特将微观企业创新与宏观经济周期相结合,提出了“技术长波论”,指出在经济发展过程中同时存在着长、中、短三种长度不同的周期,而长周期主要是由以产业革命为代表的重大创新活动(群集)引起的,每个长波均以根本性技术创新为标志。熊彼特认为,经济发展是一个动态、非均衡的过程,而创新活动非连续、非平衡的动态过程与经济的繁荣及衰退是相互对应的。由于新技术的全面应用,生产效率显著提升,周期之后的均衡水平将高于之前水平,这一过程即为“创造性毁灭”,而“创造性毁灭”是推动社会向前发展的根本动力。
自工业革命以来的200多年间,人类社会一共经历了五次经济长波,每一轮长波又分为繁荣、衰退、萧条和复苏四个阶段,每一轮长波都伴随着重大技术创新及其主导的产业变革。第一个长波时间约为1780—1842年;第二个长波时间约为1842—1897年;第三个长波的时间约为1897-1946年;第四个长波的时间约为1946—1991年。第五次经济长波复苏时间约在1982年左右,繁荣期以1991年互联网以及信息技术领域的一系列技术创新高潮为标志,是目前仍在进行且尚未完成的经济长波,波峰出现在2008年左右,并以2008年全球金融危机为标志,第五次长波进入下降阶段。从长波持续的时间来看,前四次长波的平均周期为55年左右,而第四次仅经历了45年,长波持续时间不断缩短的背后是知识和技术迭代速度的不断加快。从1991开始的第五次长波至今已持续近30年,且在2008年左右由上升波转为下降波,繁荣期接近20年,2008—2015年左右是此轮长波的衰退期,从2015—2025年左右,该轮长波将进入萧条期并达波谷,此后在主导技术驱动下经历复苏并开启第六次长波。如果前沿技术和产业变革速度比预期更快、技术的外溢和扩散效应更强,那么第五轮长波周期有可能进一步缩短,第六次经济长波有望在2030年左右开启。
当前,我们正处在第五次长波的下行区间,叠加新冠肺炎疫情影响,未来几年,全球经济很可能面临进一步萧条并逐步探底。然而,下行区间往往是新一轮主导技术的萌芽期和发展期,全球范围正在兴起的新一代信息技术创新浪潮即是最好的佐证。可以预见,作为引领变革的战略性技术,以人工智能为标志的新一代信息技术将成为第六次经济长波的主导技术,其对全球产业格局、经济社会变革的影响将远超历次工业革命,也将成为人类社会迈向智能时代的决定性力量。如果我们把以人工智能为主导技术的第六次长波开启时间作为步入智能时代的标志,那么未来10—20年左右,我们将步入智能时代;如果我们以正在兴起的新一轮科技和产业变革作为智能时代到来的标志,便可以认为我们已进入智能时代。
智能时代,以信息化、数字化、智能化为特征的前沿技术不断催生新产业、新业态和新模式,为新一轮长周期繁荣奠定了坚实基础。根本上,前沿技术的蓬勃发展在很大程度上得益于新一代信息技术群进入密集成熟期,算法向并行化、复杂化、规模化发展。算法与深度学习等不断促使人工智能向“拟人化”方向发展,即机器深度学习人类思维,实现技术本身的智慧化。如果将“智能”理解为语言、逻辑、空间、认知等能力,那么“智慧”便是指从感觉到记忆再到思维的过程,也就是说“智慧”是“智能”的升华与进阶。具体来看,数据是信息的载体,信息与实践融合会形成知识,而知识的获取在于思维的形成,思维形成过程即为智慧。智能时代,低延时的5G作为新“信息高速公路”为各主体间智慧的流动提供了桥梁,构建了万物智联、交融共生的5G信息生态,推动智慧社会的形成。可以说,智慧社会将是智能时代里程碑式的产物,也是智能时代终将形成的新社会形态。智能时代,技术与知识的双重进化是促进智慧社会演进的核心动力。在技术层面,人工智能等前沿技术已为智慧社会的建设提供了技术支撑;智能化、数字化、网络化等新一轮科技革命和产业变革也为其提供了环境基础;智能化浪潮推动了人类社会原有的基础设施、生产方式、发展要素、商业范式、经济形态、治理模式等发生转变,使智慧社会更侧重于人与生活。另外,智慧社会体现了前沿技术对人类社会的生产、生活、组织、思维等方面的广泛应用,促使技术逐步代替人的脑力工作,引发社会的链式突破,推动社会智慧化。在知识层面上,数据、信息、知识、智慧代表了信息资源的不同层级和深度,智慧社会意味着“智能”将成为与劳动、资本、土地、信息、数据等同等重要的新生产要素。
智慧社会的主要构成及服务单位是“智慧人”,即知识、技术所带来的驱动力归于人。主体多元、集体智能、共创共享、智能权利等特征更是源于人,而人的认知能力决定人的发展能力,人的发展能力决定了社会的智慧程度。当前,科学技术从两个方面改变着人类,一方面是“向外的”,即对世界的认识;另一方面是“向内的”,即对自我的认知,毋庸置疑,教育是提高人类认知能力最有效途径之一。所以,智慧社会的建设离不开未来教育的发展。首先,未来教育方式及内容决定了人的认知程度;其次,未来教育为智慧社会的发展和迭代提供人才;最后,教育发展中产生的需求及问题也为智慧社会的发展提供动力与方向。另外,智慧社会以智慧、互联为理念,通过“智联”建设打破知识、空间、时间之间的壁垒,形成三维空间与知识、时间两个维度协同融合的“五维教育”,将推动构建以人为中心的教育生产关系,释放教育潜能,推动智慧社会生产力的变革。所以,时代的更新、社会的发展必将带来教育的创新与变革,而未来教育的变革也决定着未来社会的迭代与升华。
(二)智能时代教育范式的转变
在中国进入历史新方位的今天,智能时代无疑是一个新起点。前沿技术与教育的深度融合,将进一步释放教育在推动人类社会发展过程中的巨大潜力。近年来,我国一系列推进人工智能教育应用的战略与规划陆续出台。2017年发布的《新一代人工智能发展规划》和2018年发布的《教育信息化2.0行动计划》等都对人工智能与教育的融合发展进行了明确规划。2019年印发的《中国教育现代化2035》更是将“加快信息化时代教育变革”列为教育现代化的十大战略任务,进一步部署推进智能教育应用。2019年,习近平总书记在给国际人工智能与教育大会的贺信中指出,人工智能时代教育的重要使命是培养大批具有创新能力和合作精神的高端人才;我们要积极推动人工智能和教育深度融合,促进教育变革创新,充分发挥人工智能优势,加快发展伴随每个人一生的教育、平等面向每个人的教育、适合每个人的教育、更加开放灵活的教育。因此,站在智能时代的背景下来思考教育的创新与变革,是我们研究未来教育的基本起点。
习近平总书记的指示突出了教育的时代使命与时代对教育的影响两大问题,前者强调教育应培养时代所需的人才,而后者强调时代的科技进步为教育创新与变革带来的机遇,事实上又可以统一到“学习”这个基本出发点上。在知识快速生产、迭代和传播的智能时代,教育范式变革的核心是由被动式的“教”向主动式的“学”转变,建立学习驱动型的教育体系是智能时代教育变革的主要方向。学习动力、能力和毅力的培养让学习者具有高度的适应性,这种适应性是其面对技术和产业的快速迭代及经济社会的急剧变化时所拥有的关键能力,也是社会对未来人才素养的基本要求。主动学习意味着随时学习和终身学习成为一种常态,且学习者学习和掌握的不仅仅是知识和技能,还应当学会在面对复杂社会问题时,主动运用自身的批判性思维及复杂认知去管理目标、促进合作、增进协调,以实现个人和社会发展目标的统一。因此,为建立以学习者为中心的教育新生态,必须充分发挥互联网和人工智能优势,创新教与学方式,加快构建服务全民终身学习的教育体系。
智能时代为构建以学习者为中心的教育新生态提供了前沿技术支撑,构建数字化、智能化的终身教育体系和网络化、可持续的学习型社会已成为新的使命。此时,学校和教育机构不再是封闭的社会单元,而是通过网络汇聚形成集体智慧聚变的节点。智能时代,人们已不再满足标准化的学校教育模式,对个性化教育服务和获取更多的终身学习资源、机会有了更多需求。互联网将成为教育实践的基本支撑平台,能够实现优质教育资源更大规模、更低成本、更有效的分享,通过提供开放的理念、新的组织流程、新的供给模式、创新的思维来改变整个教育组织体系,服务全民终身学习;而以人工智能为标志的前沿技术将广泛应用于教与学的全过程,助力多元化、个性化、弹性化、高品质的学习,显著提高学习的动力、效率和质量。例如,移动设备、互联网技术的进步改变了学习的时间与空间,学习资源的丰富和智能技术的支撑使得学习可以发生在任意时间和地点;虚拟平台的建设促进了公共沟通与合作,为公众智慧的生成与共享提供了平台;在线学习平台、人工智能机器增加了学习机会、推动学习走向“混合”模式,实现实体教室与虚拟教室在空间上的混合、面授教学与在线教学的混合、同步学习与异步学习的混合;大数据为学习成果的表达及学习成果的评价提供了清晰的可视化途径和精准的数据支持;人工智能通过“数字画像”,能够精准刻画学习者的行为特征,有助于更好地了解个体差异,进而开展精准教学、提供个性化学习服务。可见,基于智能技术建立促进个性发展的教育体系,是智慧教育发展的基本趋势。
知识和学习也为智能时代经济社会的可持续发展提供了动力源泉。2019年,联合国教科文组织启动了“教育的未来”全球倡议,目的是让我们重新思考在这样一个充满不确定性的复杂世界里,教育、学习和知识如何帮助我们更好地适应社会、迎接挑战,进而重新塑造人类的未来。人类生活水平的提高有赖于科技进步,而科技进步离不开创新,创新的驱动力则是内生性的知识和学习。因此,知识和学习能够促进生产率提升、扩大经济产出,提高社会生活水平。同时,当知识要素作为投入品用于生产时,会产生强大的正外部性,从而导致规模报酬递增,而一旦有了规模报酬递增,持续的增长也就成为可能。在人人共创知识、分享知识的智能时代,获得知识收益的边际成本几乎为零,这为学习者广泛获取、使用知识提供了便利,而获取知识的过程——学习也具有显著的正外部性,学习的社会效益远大于学习本身给个人、企业、组织等带来的益处。诺贝尔经济学奖得主斯蒂格利茨(Stiglitz)指出,在人类迈向知识经济的过程中,对于持续的发展和增长尤为重要的是,经济发展不依赖传统的资源积累而是基于学习实现技术进步。当前,人工智能等前沿技术创新已成为开启新一轮增长长波的核心动力,而技术的创新和突破则有赖于知识和知识载体——人力资本的不断积累。如何加快知识和人力资本积累?显然,需要通过教育和学习。因此,构建全民学习、终身学习的学习型社会,大力发展各类学习型组织、加快推进学习型城市建设,能够最大程度地激发知识和人力资本对经济社会发展的驱动效应,促进经济高质量增长和社会的全面进步。
二、智能时代教育创新与变革的趋势
我们的研究发现,智能时代教育创新与变革呈现十大趋势:
1.新技术重塑教育生态
智能时代,人工智能等新一代信息技术是实现教育生态重塑的有效手段,也是实现全球教育改革与发展共同目标、保障教育均衡和质量的最有效工具,走向智慧教育是技术重塑未来教育的最终目标。
智能时代,人工智能、大数据、区块链、虚拟现实、5G等新一代信息技术是教育系统变革的内生力量,将承担支撑引领教育现代化发展,推动教育理念更新、模式变革、体系重构的重任。前沿技术的教育应用将强化教育与技术的融合发展,将在技术理论突破、新兴技术教育应用、智能教育技术、交互认知、脑认知机理与教学模式匹配、智慧教育、教育机器人、个性化学习与规模化教育等方面发生突破性进展,甚至是颠覆性创新。在可预见的未来,教育生态体系的重构有赖于人工智能等前沿技术支撑,人工智能教育有助于转变学习模式、促进个性化培养、减轻教师负担、优化教育治理、丰富教育供给等。我们应该理性推进人工智能与教育的融合共生,让人工智能与教育共同赋能未来,实现智慧教育。智慧教育是未来教育的典型形态之一也是未来教育的发展目标,智慧教育系统包括传递教育智慧的智慧学习环境、启迪学生智慧的新型教学模式和孕育人类智慧的现代教育制度。通过智慧教育,实现公平且有质量教育、培育未来社会卓越人才的根本目标。
2.新范式引领学习革命
构建以学习者为中心的新范式是智能时代教育变革的主要方向,由此引发的学习革命将促进主动学习和终身学习成为常态,加快构建和完善面向未来的终身学习生态体系已成为必然趋势。
终身学习强调教育过程由“以教为中心”向“以学为中心”转变,强调学习者要由他律向自律转变,强调学习需求由外驱向内驱回归,强调学习资源、学习途径、学习方式、学习内容等方面的开放性、灵活性和系统性。面向未来学习的终身学习体系将呈现以下特征:随着信息与交流技术的多样化和传播手段、信息、知识和价值观的源泉多样化,个体学习日益发生在正规教育机构之外;传统知识源泉的垄断权威性弱化,终身学习的针对性大大增强,草根满足草根的服务模式开始出现,并且可能更符合人们的学习需求;解决工作中的问题、提前为应对未来社会的变化作准备是人们学习的主要动机,基于工作场景的终身学习使灵活的技能开发和获得职业资格成为可能;正规学习与非正规学习之间的认证机制逐渐得到完善,使得不同群体都能够根据自己的条件和需求,选择适合自身的学习机会,并在学习之后实现对不同学习成果的转换。智能时代终身学习的生态发展路径包括搭建学分“立交桥”、基于大数据的学习地图、终身学习载体建设和发展、草根满足草根的新型服务模式。
3.新需求激发创新能力
未来社会迫切需要创新型、创造型人才,以激发社会创新能力,而创造力教育正是推动人才培养目标变革的重要环节与手段。
智能时代,如何对海量信息进行搜集、筛选、整合和利用,如何在日新月异的技术发展中提出具有前瞻性、创造性和领先性的技术构思,这是当今人才培养必须要思考的问题。在此背景下,未来教育必然需要培养具有“生产性”思维的创新性、创造性人才。智能时代要求创新和创造性人才具有创新人格、数字学习能力、计算思维、设计思维、思辨能力、人机协同六大特征,其中创新人格是创新能力的人性特征、思辨能力是创新能力的思维基础、数字学习能力是应对知识变迁的必备技能、计算思维是实现创新的基础技能、设计思维是实现创新的基础手段、人机协同是顺应智能时代必备技能。前沿技术赋能创造力培养主要体现在营造支持性智慧环境、变革教学模式、推广和丰富学习资源三方面。面向智能时代的创造力培养包括四大途径,即打造智慧学习环境,提供支持性服务;探索新型教学模式,实现全面培养;更新教学内容,紧跟时代需求;依托场馆情境,营造真实氛围。
4.新环境呼唤数字素养
面对智能时代的数字化成长环境及崭新的时代特征,提升数字素养迫在眉睫,只有丰富和发展学习者核心素养内涵,培育数字素养,方能更好地应对未来社会挑战。
智能时代,也是数字经济时代、智慧教育时代、数据文明时代。面对崭新的时代特征,迫切需要丰富和发展学生核心素养的内涵,强化包括信息素养、媒介素养以及数据素养在内的数字素养。区别于工业时代的学习内容与学习方式,智能时代的教育以互联网为基本媒介平台,以个性化学习为主要方式,以提升公众的数字素养为核心目标。在未来社会中,数字素养一定是每个个体生存发展的基本技能。因此,数字素养的培育乃时代之大使命。凭借单一主体的力量难以为继,构建培育和提升数字素养的生态系统实属应有之义。
5.新市场革新人力结构
知识迭代、技术进步与产业升级不断重塑原有的劳动力市场,增加了劳动力市场对创新型、高技能人才的需求,人力资本水平提升和结构优化将为高质量发展创造大规模的人才红利。
新时代的中国正在获得大规模人力资本红利,而教育是人力资本积累的最重要途径,通过提高知识和发展技术能力,教育有助于增加人力资本积累从而提高个人及组织的生产效率。可以预见的是,以劳动密集型产业为主的产业结构将逐渐退出历史舞台,取而代之的是以高技术、高附加值为主的知识、技术密集型的产业发展模式。随着人力资本水平的提升和技术的迭代,劳动力市场中人力资本结构发生变化,智能时代的到来更是增加了劳动力市场对高知识、高技能人才的需求。如果技术革新和进步替代就业岗位的速度大于劳动力市场中人力资本结构变革的速度,短期内结构性失业在所难免。但从长期来看,随着人力资本水平提升,越来越多的劳动者会满足岗位需求,而智能时代也将创造更多新就业机会、扩大生产规模而增加就业岗位。要应对智能时代的挑战,应深化教育和人才培养体系改革、不断更新劳动力的知识、技能和能力,以应对时代要求。
6.新业态丰富服务供给
智能时代,教育服务新业态新模式层出不穷,极大丰富了教育服务供给,推动了教育服务产业的蓬勃发展,满足了学习者个性化、多元化、弹性化、品质化的新学习需求。
智能时代政府、市场和社会组织的多元供给模式形成有助于教育资源的优化配置、推动公平且有质量教育目标的实现。教育服务产业是伴随新一轮科技革命、消费及需求升级快速发展起来的现代服务业,是市场配置教育资源的重要方式,已成为终身学习生态体系的重要组成部分。教育服务产业发展已走过粗放增长时代,互联网下沉与前沿技术创新为产业各细分领域的发展带来新机遇,产业升级与整合的方向将始终与技术创新、政策变化、需求驱动紧密结合。前沿技术将进一步向产业各细分领域渗透,不断创新产品和服务模式,打造全新业态和生态。教育信息化将呈现出广度、深度同时扩张的态势,职业教育、素质教育受益于政策支持也将获得广阔空间,而学前教育、K12教育、国际教育等则可通过科技赋能、品类创新、个性化服务与集团化战略等拓展潜在空间。在强监管、重规范及有序鼓励的总体政策基调下,以提升品质为核心的垂直深耕及以融合创新为核心的生态战略是未来企业赢得市场的必由路径。
7.新投资驱动产业升级
随着宏观经济金融环境、政策导向变化以及科技与教育融合的加速,资本已趋于成熟理性,投资策略也更加注重企业的内在价值与创新潜力,驱动了教育服务产业的提质升级。
教育服务产业发展过程中,金融资本不仅起到了源头的资本供给作用,同时还通过一套完整的资金流动和配置体系,提升了产业发展与金融系统之间的互动效率。智能时代,打造包含投资生态、技术生态和教育服务生态在内的融合型生态体系,有助于促进技术、产业与资本的良性发展。一级市场上,经历了数次泡沫和周期,资本已趋于成熟理性且更加注重长期价值,大额融资将进一步向已具有竞争壁垒的头部企业和项目集中。二级市场上,IPO将成为资本退出的主要渠道,特别是A股IPO将迎来新热潮。同时,尽管A股并购热潮已退,但海外并购趋势仍将持续火热,且呈现内资境外并购、外资入境双向发力态势。总体而言,成熟的资本在产业布局中的核心考量越来越与技术创新、政策支持、需求升级等因素密切相关。未来,科技赋能创造投资空间、政策驱动引领投资方向、市场扩张打开投资蓝海是教育服务产业投融资的三大机遇,但仍要警惕新一轮行业泡沫以及双主业上市公司在整合资源与管理协作等方面可能面临的问题与挑战。
8.新实践聚焦公平优质
依托于前沿技术的教育发展新实践将更加注重有质量的公平,技术不仅在促进教育公平中将发挥更大作用,也有助于优化优质教育资源的配置,提升教育发展的质量。
智能时代,公平和有质量的教育依旧是中国教育发展的主要目标,而前沿技术将在促进教育公平中发挥更大作用。在起点公平阶段,促进优质教育资源的均衡配置与共享;在过程公平阶段,智能技术不仅实现了对海量信息的精准获取,还能促进教育服务的个性化和精准化;在结果公平阶段,通过协作知识建构、基于大数据的过程性评价等,使得学习者能够获得自适应发展的客观科学评价。对于贫困地区、少数民族地区而言,教育帮扶的信息化、技术化与互联网化是改变和保障贫困地区学生受教育权的主要趋势。科学技术的发展同样为特殊需要学生的学习带来了便利和益处。同时,技术创新还促进了教师资源的优化配置进而提升教育质量。然而技术发展对教育公平也将是一把双刃剑,在认识到它对于教育公平的促进作用的同时,必须正视前沿技术发展可能产生新的数字鸿沟以及虚假平等问题。
9.新治理鼓励多元协同
现代化的教育治理体系鼓励多元主体协同参与、重构治理主体结构,为实现智能时代的教育善治目标,应将技术优势转化为制度优势,让技术与法治相互促进、相互保障,通过新制度赋能新治理。
智能时代,信息技术在教育治理的多个环节、多个层面都产生了不同程度的影响,教育生态正经历着信息技术带来的理念、形式、方法和内容的重大转变。在前沿技术支撑下,数据将更易采集且能够实现互联互通,这为科学的教育决策和管理提供了更为有力的数据保障和技术支撑,也促进了“管办评”分离和“放管服”改革。然而在前沿技术与教育融合过程中,隐私泄露、数据鸿沟、数据失信、算法歧视、决策禁锢等问题也不容忽视。智能时代的教育治理,是信息化环境下教育现代化发展与改革的一种拓展和延伸,教育治理应在新的制度和技术辅助下,更加凸显人的主体性,在教育视域内,更加关注学生的主体价值,这也是教育治理和教育现代化的终极目标。现代化教育治理是资源分配、规范体系建设、能力建设等各项任务的同步协调。多元主体参与教育治理,不仅意味着要向社会更大力度地放权,进一步促进教育开放发展,同时还需要落实好公众在教育决策中的参与权、监督和评价权,以及充分利用新一代信息技术环境与设备,将技术优势转化为制度优势,通过制度赋能治理。
10.新财政亟待兼容技术
智能时代教育财政制度创新要兼容教育领域的技术变革,向治理型教育财政转型,是加快转变政府职能的重要内容,也是实现教育治理体系和治理能力现代化的重要途径。
公共财政支持教育发展主要体现在公共财政对学历教育体系中各级各类学校教育的发展支持。但在智能时代,教育科技企业、社会资本等新的教育服务供给者,以及在线教育、智慧课堂、企业参与教育等新的教育供给形态不断涌现。为推动新技术在教育领域应用,实现智能时代的数字化教育,我国出台了一系列重要文件,建立并完善财政支持机制,以项目为抓手推进我国教育信息化发展。除传统政策支持外,我国还调整了相关学科的专业结构,鼓励高校设置人工智能、虚拟现实、微电子等新兴专业。尽管如此,我国现行的教育财政制度仍没有跟上教育领域内的技术创新步伐,现行的教育财政拨款体系并未兼容新兴的教育供给者。向治理型教育财政改革,是加快转变政府职能的重要内容,也是实现教育治理体系和治理能力现代化的重要途径。迈向治理型教育财政需要更加关注财政主体多元性、公众参与性、公益性与回应性、绩效性和法治性,发挥好市场与政府的作用,以及社会组织在提供混合公共产品方面的优势,探索出符合国情、适应社会主义市场经济发展要求的制度体系。
三、研究未来教育获得的五点启示
智能时代下的教育创新与变革即代表着未来教育的发展方向。关于未来教育,理论界和实践界从学校空间重构、学习中心迁移、教育供给模式创新、人才培养模式改革、教与学方式变革、教师角色进化、课程体系重构、评价方式迭代、教育组织管理创新等多维度进行了广泛而深入的解读。这些面向未来的教育变革要想从理论走向实践,离不开技术的支持,数据和技术将成为构建未来教育新生态的核心驱动力。
事实上,关于“未来教育”没有也无需有明确的标准和界定。这是因为,未来充满了不确定性,这使得教育体系需要根据经济社会发展的新形势、新变化不断进行调整与更新。尽管如此,教育又能够让我们在不确定性中获得某种确定,这种“确定”即是我们应对世界变化所拥有的知识和能力。当我们面向未来谈教育时,应该系统思考如何通过学习让我们在面对迅速变革的时代和社会时,能够以更加开放的思路和多元的视角,从容应对问题和挑战、抓住机遇、寻找有效解决方案、创造更多社会价值。这意味着,未来教育不是现有教育体系某一方面的变革或教育体系的边际创新,而是构建一个真正以促进学习、素养和能力提升为核心的全新教育生态,这个新生态可以为个人的终身学习与发展提供公平的、开放的、高质量的、多元的、弹性的、个性化的教育资源与服务,从而让每个人都有平等机会通过学习改变命运、成就梦想;这个新生态必须与时代接轨,紧跟前沿技术和产业变革的大趋势,可以不断满足社会对创新人才的需求,实现“学习”与“社会发展”的紧密衔接。
立足智能时代及教育的内核,我们形成了以下研究未来教育的五点启示:
1.以全人发展为根本
不论教育的形式、内容、方法、手段等如何变化,未来教育的中心依旧是培养人并为促进人的全面发展而服务,所以将人的全面发展与适应社会需求相结合建立起的新的教育生态是未来教育实践的根本立足点。“人”既是智能时代的原点也是教育的原点,所以更要思考未来教育应如何培养塑造人,才能使其适应智能时代的更迭,展现人的价值。智能时代下的教育应该从“工具思维”走向“原点思维”,将不可被人工智能替代的素养与能力作为培养的核心目标。同时,要改变割裂思维,走向关联思维,尤其要警惕将人工智能与人类智能割裂开来的做法,即要在两者关联的意义上思考人工智能与教育的关系。
2.以主动学习为中心
学习是人类获取知识以提升自我价值和社会价值的最主要途径。因此,未来教育应构建以学习者为中心的教育新生态。学习动力、能力和毅力的培养让学习者具有高度的适应性,这种适应性是其面对经济社会的急剧变化时所拥有的关键能力,也是社会对未来人才素养的基本要求。未来教育在摆脱传统的时间和空间坐标的同时打破了对人生阶段“学习期”与“工作期”的两重划分,未来的学习过程与生命过程一样漫长,学习者必须具有主动学习能力才能保证学习的连续性,这要求教育者要教会学习者用自我更新的终身学习理念去适应高速发展的社会,而与终身学习相伴随的是评价方式的革命,所以多元化评价体系的建设应成为未来教育的重要组成部分。
3.以能力提升为抓手
新生产方式的出现在要求新一代学习者具有创造性、适应性与个性的同时,也要具备批判性思维、创造性能力和开拓性精神。未来,学习者不仅要主动学习知识、掌握关键技能,更重要的是能够在社会生活中将知识和技能转变为更高阶的认知能力、批判性思维以及创新创造才能,从而在合作、协调、目标管理等方面促进个人与社会目标的实现。因此,能力培养应被视为应对未来挑战、提升国家教育实力和公民素养的重要内容。为此,未来教育必须超越知识,充分重视并营造更多实际场景以培养和磨练学习者的能力、素养和态度。
4.以优质供给为导向
为了真正形成以学习者为中心的新教育体系,未来教育应不断适应社会和个人的教育需求升级,以供给侧改革为抓手,开创教育对外开放新格局、深化教育与社会的联系、变革教育资源配置的体制机制、创新教育服务供给模式、多渠道扩大优质教育的有效供给,让公共选择机制和市场机制协同发挥作用。为此,不仅应推动正规教育的优质均衡发展,还应通过非正规教育、非正式学习等方式提供更大范围、更加灵活的终身学习机会,实现正规学习与非正规学习融合、学校学习与社会学习融合、正式学习与非正式学习融合,构建并完善正规学习、非正规学习和非正式学习之间学分和人才的双向流动机制。
5.以优化治理为保障
与未来教育新生态相伴随的是一系列不确定性带来的新挑战,新一轮科技产业革命或将摧毁旧生产力与旧生产关系,加剧传统教育制度体系与新生产力之间的矛盾。因此,未来教育需要依靠现代化的教育治理体系以有效应对挑战,同时也需要现代化的治理能力把制度优势转化为管理效能。不论时代如何更迭,政府依旧在教育治理中扮演着重要角色,但时代更迭又赋予了政府新的管理思路、手段和方法,特别是技术赋能治理创新,能够优化政府管理行为,释放教育发展活力。因此,新挑战不仅需要政府在内的多元主体共同协调和解决,技术本身也将成为解决挑战的重要工具。总之,推进教育治理体系和治理能力的现代化不仅是未来教育实践的重要内容,也为其提供了重要的制度支撑和有效保障。