博舍

科学网—人工智能对社会伦理价值的影响 人工智能 人文伦理的特点

科学网—人工智能对社会伦理价值的影响

人工智能对社会伦理价值的影响

已有3830次阅读2019-8-2713:08|系统分类:观点评述

人工智能对社会伦理价值的影响

从主题研究角度来看,根据人工智能的特征及其与社会的关联以及目前全球人工智能伦理研究的成果,人工智能伦理研究可概括为四大板块:人工智能道德哲学、人工智能道德决策、人工智能设计伦理和人工智能社会伦理。这些板块相互关联,又拥有相对独立的讨论域。人工智能道德哲学主要关注传统道德哲学如何面对人工智能的挑战,以及人工智能如何促进道德哲学的发展;人工智能道德算法主要研究如何理解和实现人工智能道德决策的问题,使人工智能能够做出合乎道德的决策;人工智能设计伦理研究人工智能得设计和制造应遵循哪些伦理准则,使人工智能的设计与社会价值观保持一致;人工智能社会伦理主要研究如何善用和阻止恶用人工智能,使人工智能造福于人类。

从哲学思考方面来说,科学技术哲学界认为技术与伦理正如两条相互缠绕的通道指引着人工智能的健康发展,一面展示着人类科技认知的水平,另一面展示着人类道德文明的程度。随着人工智能社会伦理问题的凸显,人工智能被赋予的伦理属性以及相关研究越来越多。

从文献计量学视角看,在1999-2018年的WOS数据库中,无论是以“人工智能伦理”为主题的文献还是以“机器人伦理”为主题的文献都呈现出显著的增长趋势。特别是近十年来,相关文献出现了井喷式增长,2018年以“人工智能伦理”为主题的文献量高达96篇,比2017年的文献量翻了一倍,更是1999年文献量的19倍。2016至2018年以“机器人伦理”为主题的文献量分别为59篇,60篇,72篇,这三年的文献数量是1999至2015年文献量的总和。这样高速的增长趋势说明,越来越多的学者意识到人工智能伦理研究对于社会发展的重要意义与积极作用,探索人工智能伦理研究的知识情报有助于人工智能产业以及人类社会的健康发展。

一、人工智能与社会贫富差距

目前国内对人工智能的社会公平与贫富差距影响的研究几乎是空白的,但是也有个别学者在税收和社会风险应对角度对人工智能所引发的社会贫富差距问题进行了宏观探讨。

葛玉御等(2018)认为人工智能通过两条路径影响税收现代化。第一,人工智能的发展会影响经济增长、劳动力就业和收入分配,从而倒逼"促就业、调结构、缩小贫富差距"的税制改革,既要对促进就业和就业转型给予税收支持,税收上做"减法",又要适时对人工智能机器人征税,做"加法",同时,还为破解个人所得税改革和房地产税立法开征的难题创造条件,优化税制。第二,大数据、云计算、机器学习、模式识别和人机交互等人工智能平台与技术会提升税收征管信息化水平,重塑税务工作方式,提升纳税遵从度,推动税收征管进步。

唐钧(2019)在研究人工智能的社会风险应对时发现,人工智能在创造社会效益的同时,也会引发人财损失、秩序破坏等社会风险。技术视角的风险源于"算法主观性"等技术属性,易导致人财损失等恶劣后果;而现有的风险应对措施偏重于"工具理性",难以有效根除责任事故和社会负面影响。社会视角的风险来自于人工智能在社会应用时的"马太效应"等机理所导致的大多数民众和极少数弱势群体的权益受损等问题;而现有的风险应对方案侧重于"价值理性",可能出现效率与公平的失衡或偏颇。

二、人工智能与社会公益

人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?人工智能发展不可能只有积极的一面,人工智能的发展为违法行为提供了便利。人工智能的技术走在了前面,而法律、人们的习惯和社会公德等并没有跟上。

此外,在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。

2017年,美国电气和电子工程师协会(IEEE)宣布了三项新的人工智能伦理标准。基于科学和技术的公认事实来引入知识和智慧,以帮助达成公共决策,使人类的整体利益最大化。 第一个标准为:“机器化系统、智能系统和自动系统的伦理推动标准”。这个标准探讨了“推动”,在人工智能世界里,它指的是影响人类行为的微妙行动。 第二个标准是“自动和半自动系统的故障安全设计标准”。它包含了自动技术,如果它们发生故障,可能会对人类造成危害。目前而言,最明显的问题是自动驾驶汽车。 第三个标准是“道德化的人工智能和自动系统的福祉衡量标准”。它阐述了进步的人工智能技术如何有益于人类的益处。 

2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。

欧盟委员会于2019年4月以“建立对以人为本AI的信任”为题,发布了欧洲版的人工智能伦理准则,期望建立“以人为本、值得信任”的人工智能伦理标准,不断促进社会公众接受人工智能技术、应用人工智能技术。欧盟AI高级专家组起草该伦理准则过程中,参考了欧洲科学与新技术伦理小组和欧洲基本权利机构的有关工作成果。为了实现“可信任AI”,该项伦理准则确立了三项基本原则:(1)AI应当符合法律规定;(2)AI应当满足伦理原则;(3)AI应当具有可靠性。根据这三项基本原则和前述欧洲社会价值观,该项伦理准则进一步提出了“可信任AI”应当满足的七项关键要求,包括:(1)人的自主和监督;(2)可靠性和安全性;(3)隐私和数据治理;(4)透明度;(5)多样性、非歧视性和公平性;(6)社会和环境福祉;(7)可追责性。

三、人工智能与科技伦理

    人工智能大数据与道德算法是统摄人工智能载体道德认知与行为的基础,随着生物仿真、神经网络以及脑科学技术的发展,越来越多不同学科的学者加人到人工智能伦理系统的开发与应用中;人工智能伦理研究已经从哲学形而上的讨论转向人工智能载体伦理设计与实践测试中,包括无人驾驶汽车、自动化武器、机器人等多个智能产业;在人工智能载体的应用方面,机器人的伦理价值敏感设计是当下人工智能工程的伦理研究热点。

Bonnefon通过实验测试了人工智能伦理系统对无人驾驶汽车实现道德自主权的可能性,伦理系统设计突出了人们对智能机器的道德期望、文化价值和法律标准。但实验结果证明目前尚没有能够协调道德价值观和个人利益的人工智能伦理系统,更无法通过伦理系统设计去融合不同文化圈的差异,人工智能机器的伦理系统设计研究仍然任重道远。之后,Bryson提出了人工智能自动系统中伦理系统设计标准:①普遍原则设计;②价值观设计;③安全性能设计;④慈善设计;⑤隐私与人权设计;⑥军事人道主义设计;⑦经济与法律设计。

Kurzweil首次提出了“奇点临近论”,当人类临近“奇点((singularity)",智能技术无限制突破,机器将会融合人类的知识和智慧,成为超出人类生物学范畴的“智慧生物”,并将挑战人类生存空间。构建“人类与机器文明”的社会伦理秩序以及人工智能道德安全体系是确保人类生存与延续不可或缺的保障。Chalmers在“奇点临近论”的基础上讨论了人工智能道德安全技术防御问题。

Bostrom认为在人工智能载体的设计之初就应该充分考虑其作为人类事务委托者或决策代理者的伦理规范,同时其表示了对人工智能超越人类大脑成为超级智能的担忧与质疑。超级智能是一种完全独立于人类智慧之外的实在,并且挑战人类生存空间。虽然目前的人工智能发展尚未进人“超级智能”阶段,但是构建人工智能道德代理的风险防范机制是极为必要的。

四、人工智能与人文关怀

人工智能对人文关怀的影响主要体现在对社会公众认知的改变、对权利责任认定以及道德地位的确定、对社会学科的价值形塑、对社会弱势群体的关照和对战争的预防等方面。

刘耀会(2017)通过研究人工智能与社会伦理的关系是发现,随着人工智能的快速发展,社会上针对人工智能出现了两种声音,称之为人工智能支持论和人工智能威胁论。并且以医疗机器人为例,探讨生物医学伦理问题,他认为医疗机器人主要存在公平受益、数据质量、病人隐私和安全及监管等方面的道德伦理问题。吴恺(2019)在对当代人工智能技术发展中的伦理问题研究中发现人工智能技术发展中的伦理问题存在人工智能的"权利"、人工智能事故的责任认定、人工智能的道德地位等方面的问题,并提出了加强人工智能技术的国际交流与合作等解决办法。

徐选国等(2018)从社会工作学科发展角度出发,社会工作作为缓解新时代背景下社会大众美好生活需求与不平衡不充分发展之间矛盾的重要制度性力量,通过履行科学、艺术与政治三大核心属性,以积极回应人工智能时代所引发的结构变迁、秩序重组以及体制创新。蒋晓等(2019)以人工智能新闻应用中的现实问题为突破口,借鉴国外伦理理论和实践中的合理思想和成功经验,结合中国的传统伦理和现实语境,借助技术伦理学的研究视角,从伦理基石、基本原则、政策框架、责任主体、道德规范、技术工具等方面提出中国人工智能新闻伦理的构建路径。 

SharkeyN与SharkeyA在其论文中通过引人能力要素法(capability受护者尊严的维度,approach,CA)讨论并定义了老龄其中包括:①寿命维度度;②体质维度;③感官维度;④社交维度;⑤种族维度;⑥康乐维度;⑦公共环境维度等,并根据能力要素法提出了护理机器人的伦理设计方案,旨在通过拓展机器人护理的伦理能力让老龄受护者获得更多的尊严需求。

Sharkey在其论文中归纳了当下社会在机器人应用中遇到的伦理困境,主要体现在三个方面:①儿童看护机器人对孩子造成的心理依恋与社会交流障碍等问题;②老年看护机器人对老人造成的情感孤独与欺骗;③战争机器人对叛乱分子的残酷打击。Sharkey认为机器人在看护与战争领域的应用只是人工智能载体推向市场与战场的冰山一角,高科技涌动的背后存在着潜在的危机,确立机器人应用的道德防范体制与安全底线标准,应是机器人伦理学研究努力的方向。

参考文献

    李伦,孙保学.给人工智能一颗“良芯(良心)”――人工智能伦理研究的四个维度[J].教学与研究,2018(08):72-79.

    刘鸿宇,苗芳艳,彭拾,夏思宇,王珏.人工智能伦理研究的知识图谱分析[J/OL].情报杂志:1-10

    葛玉御,宫映华.借势人工智能,实现税收现代化[J].税务研究,2018(06):13-18.

    谭铁牛.人工智能的创新发展与社会影响[J].中国人大,2019(03):36-43.

    科技部部长王志刚:人工智能发展走在了社会伦理前面http://news.sina.com.cn/c/2019-03-08/doc-ihrfqzkc2309494.shtml

    欧盟人工智能伦理准则概要-中国法院网https://www.chinacourt.org/article/detail/2019/04/id/3847326.shtml

     BonnefonJF,ShariffA,RahwamI.TheSocialdilemmaofau-tonomousvehicles[J] .Science,2016,352(6293):1573一1575.

     BrysonJ,WinfieldAFT.Standardizingethicaldesignforartifi-cialintelligenceandautonomoussystems[J].Computer,2017,

50(5):116一119.

     KurzweilR.Thesingularityisnear:Whenhumanstranscendbiol-ogy[M].London:PenguinBooks,2005.

     ChalmersDJ.Thesingularity:Aphilosophicalanalysis[J]JournalofConsciousnessStudy,2010,17(9一10):7一63.

     BostromN.Super一intelligence:Paths,dangers,strategies[M]Oxford:OxfordUniversityPress,2014.

    刘耀会.关于人工智能与社会伦理的探讨[J].机器人技术与应用,2017(05):44-48.

    吴恺.当代人工智能技术发展中的伦理问题研究[J].中共山西省委党校学报,2019,42(03):65-68.

    徐选国,杨威威,徐永祥.人工智能时代的多重挑战与社会工作的专业回应[J].人文杂志,2018(06):120-128.

    蒋晓,韩鸿,兰臻.中国语境下的人工智能新闻伦理建构[J].西南民族大学学报(人文社科版),2019,40(06):151-158.

    SharkeyN,SharkeyA.Grannyandtherobots:Ethical issuesmrobotcaregy,2012fortheelderly[J].EthicsandInformationTechnolo-14(1):27一40.

 

https://blog.sciencenet.cn/blog-3378353-1195432.html下一篇:无贫赋收藏IP:159.226.34.*|热度|

人工智能的社会、伦理与未来

中国社科院哲学所党委书记王立胜

吴彤教授指出,科技哲学包括人工智能哲学研究需要哲学和科学两个方面的两个积累。当下提出人工智能的社会、伦理与未来研究非常重要。仅从科学和技术的角度研究人工智能还不够,还需要引入哲学、社会学、伦理和未来研究等方面的研究,非常支持在自然辩证法研究会下建立一个专业委员会,在这个旗帜下,把工作做细、做深、做透,研究更为广泛深入系统。在人工智能快速发展过程中,对其社会和未来影响,要有伦理和哲学的关注,应与科技哲学密切结合,以促使人工智能的发展更为健康。

中国自然辩证法研究会副理事长、清华大学吴彤教授

以下是大会的主题报告。

中国人民大学刘晓力教授

上午第一场主题报告由中国人民大学的刘晓力教授主持。她认为:今天是我们人文学界和科学界的一个大聚集,非常高兴能够参加这样一个会议。我们将人工智能的社会、伦理与未来研究提到日程,跟其在上世纪90年代以后的发展有很大的关联。而这一轮报告由我来主持,我想可能是因为我多年来在人工智能科学和认知科学哲学领域的开展工作,比较了解人工智能的发展及其近年来革命性的变化。人工智能分为符号主义、计算主义等自上而下的道路和联结主义如包括神经网络、深度学习等自下而上的道路,但两者分别遇到了符号语义落地问题和物理落地问题,符号语义落地问题指机器不懂符号的语义,物理落地问题指目前发展的人工智能还不能与外部世界很好地打交道。因此有人提出将机器人能不能快递小哥一样满世界送披萨、能不能很好地跟老人打交道、能不能理解人的情感等作为新的图灵测试标准。人工智能的未来发展应该是从自上而下到自下而上的融合,社会伦理问题与两条路径融合的前景相关联。

中国人民大学教授刘大椿

中国人民大学一级教授刘大椿教授在报告《人工智能伦理考量的必要性和局限性》中指出,首先提出一个问题,即“为什么人工智能的伦理考量它具有必要性?”究其原因在于两点,其一是因为人工智能迅猛发展,全世界都十分重视人工智能和对人工智能的伦理考量。以欧盟发布的《人工智能伦理准则》(2019年4月8日)为例,他认为人文学者已经深度地参与到人工智能的发展之中,对此我们应予以关注。信赖的人工智能这是我们的目标,可信赖的人工智能它需要有一定的技术基,必须有伦理准则,实际上就是一种人文考察。可信赖的人工智能必须有两个组成。第一就是要尊重基本人权,人工智能还要尊重基本人权,基本的规章制度,核心的原则和价值观;第二就是在技术上应当是安全可靠的,要避免因为技术的不足造成意外的伤害。第二个原因是当下中国的人工智能的发展十分迅速,很多技术应用已走在前面,伦理考量越来越重要和必要,社会学,伦理学,未来学等方面的思考也不可少。应该看到,在伦理考量上欧盟等已经走在前面了,我们必须抓紧。此外,他也指出,我们要看到对高科技的人文思考包括伦理考量也有其局限性,即往往陷入非黑即白,这样看问题是不利于高科技发展的。科技界应该认识到,人工智能落地遇到的问题往往是社会、伦理和法律问题,不可能完全通过技术解决。哲学社会科学界应该紧跟我国新一代人工智能的发展,持续跟踪和评估人工智能研究的进展和问题,进而有针对性的展开相关研究。

中国人民大学暨美国科罗拉多矿业大学国际著名技术哲学家卡尔·米切姆

中国人民大学暨美国科罗拉多矿业大学国际著名技术哲学家卡尔·米切姆(CarlMitcham)在报告《闪光背后:追问人工智能》中指出:工程技术的发展往往会因其巨大收益而呈现出耀眼的光芒,在当前有关智能主体、深度学习、大数据以及通用人工智能等新一波人工智能热潮中,其应用性和便捷性又呈现出了新的耀眼承诺。但是人类无疑面临着更深远的挑战,而哲学的职责就在于帮助我们去察觉包括人工智能在内的新技术的黑暗的一面。恰如莎士比亚在《威尼斯商人》中的警告:“闪光的未必都是金子”。与此同时,哲学家们也应看到其先前努力中的无能之处,意识到哲学之闪光也未必是真金。

新加坡国立大学暨青岛大学未来学院院长葛树志教授

新加坡国立大学暨青岛大学未来学院院长葛树志教授在其《人工智能和社会机器人的思考》报告中指出:当前流行的深度学习只是机器学习的高峰,虽然人工智能在语音和图像识别上得到了广泛应用,但真正意义上的人工智能的发展还有很长的路要走。在应用层面,人工智能已经开始用于解决社会问题,各种服务机器人、辅助机器人、陪伴机器人、教育机器人等社会机器人和智能应用软件应运而生,各种伦理问题随之产生。人工智能伦理属于工程伦理,主要讲要遵循什么标准或准则可以保证安全,如IEEE的标准等。机器人伦理与人因工程相关,涉及人体工程学、生物学和人机交互,需要以人为中心的机器智能设计。随着推理、社会机器人进入家庭,如何保护隐私、满足个性都要以人为中心而不是以机器为中心设计。过度依赖社会机器人将带来一系列的家庭伦理问题。为了避免人工智能以机器为中心,需要法律和伦理研究参与其中,而相关伦理与哲学研究也要对技术有必要的了解。

上海社科院哲学所副所长成素梅教授

上海社科院哲学所副所长成素梅教授在报告《人工智能的职业伦理准则》中强调,传统的伦理与法律是围绕规范人的社会行为而展开的。伦理与法律的有两个本体论假设,一是人的社会性,二是人与工具的二分,即把工具看成是价值无涉的。然而,人工智能的广泛应用对这种人与工具二分的本体论假设提出了挑战。

因为,人工智能的“大脑”是“算法”,而以算法为核心的软件机器人既有自动监控能力和自主决策能力,也负载着文化,具有技术偏向和路径依赖性。在算法社会人与数据环境关系就会发生逆转,不是人来适应数字环境,而是数字环境来适应人。因此,重构算法社会的伦理规范,来确保人工智能造福于人类,成为改善人类生活的向善力量,成为当前的重要任务。

我们需要制定人工智能的职业伦理准则,来达到下列目标,(1)为防止人工智能技术的滥用设立红线;(2)提高职业人员的责任心和职业道德水准;(3)确保算法系统的安全可靠;(4)使算法系统的可解释性成为未来引导设计的一个基本方向;(5)使伦理准则成为人工智能从业者的工作基础;(6)提升职业人员的职业抱负和理想。

人工智能的职业伦理准则至少应包括下列几个方面,(1)确保人工智能更好地造福于社会;(2)在强化人类中心主义的同时,达到走出人类中心主义的目标,在二者之间形成双向互进关系;(3)避免人工智能对人类造成任何伤害;(4)确保人工智能体位于人类可控范围之内;(5)提升人工智能的可信性;(6)确保人工智能的可问责性和透明性;(7)维护公平;(8)尊重隐私、谨慎应用;(9)提高职业技能与提升道德修养并行发展。

北京邮电大学人机交互与认知工程实验室主任岗位教授

北京邮电大学人机交互与认知工程实验室主任岗位教授刘伟在报告《人机、智能及伦理》中指出:人机、智能与伦理在东西方不同语境下具有不同涵义,对人机、智能和伦理的完整思考需要东西方观念相互结合。人机、智能、伦理还涉及人—机—环境(包括伦理、商业、社会、自然、科技环境)之间的相互作用,关键在人机交互与人机融合。最后应该注意的是:一是所有的智能都是有范围的。以机器学习为例,它仅是一种隐喻。真正的学习本身包括潜在的范围不确定的和隐形的知识与规则;二是没有哲学的分析,所有的智能科学很难发展到今天这个程度,人工智能科学需要尊重哲学才能促进自身长远发展;三、智能科学、人机交互研究是由战争的需要催化出来的,要通过研究战争的规律和发展态势寻找新的研究线索。

复旦大学王国豫教授

第二场主题报告由复旦大学王国豫教授主持。她认为当下,无论是人文学者,还是科学家,人工智能都是一个热点话题。对于人工智能问题,一方面它本身是交叉学科,另一方面就是有关它的伦理问题。这些会讨论的并非是大数据或者人工智能的专门问题,而是人工智能能够带给我们什么。我有一个笔记本可以将我上课的录音转换成文字,长期积累下来对我很有帮助。从这个例子上来说,人工智能能够带给我们很大的方便,但是它也不是很完美,里面的错误还是非常多的。此次会议关于人工智能思考,有来自技术的、政策的、法律的还有来自哲学的,充分展示了关于人工智能社会、伦理和未来的研讨会是一个跨学科的平台。但是最后我希望再说一句给大家思考的问题,尽管平台具有跨学科、多视角的特点,但是我们作为一个探讨人工智能伦理社会的这样一个团体,未来要建立这么一个学会、想要发展下去,并且能够在这学科上给自己一个明确的支撑,我们必须要思考的就是我们研究的方法论基础是什么?我提醒大家思考一下,否则就会是走不下去的。

中国科学院自动化所曾毅研究员

中国科学院自动化所曾毅研究员在报告《人工智能准则及其技术模型》中指出:目前由不同国家地区的政府、非政府组织及研究机构和产业颁布的人工智能伦理准则提案已经超过40个。但不同的准则涉及到的议题视角各不相同。由于文化、地域、领域的差异,“大一统”的准则提案不但很难做到,而且没有必要。因此,不同国家、组织之间伦理准则如何协同很重要。同时,对人工智能风险、安全与伦理的思考急需进行算法化、模型化落地,从而确保人工智能向对社会有益的方向发展。由于技术发展会对伦理准则提出新的要求,这些准则如何进行技术落地、经受社会检验,再不断迭代完善,是未来要面临的更有意义的问题。在当前对人工智能伦理的讨论中,还有一些问题亟待解决。由于设计缺陷,现阶段的很多人工智能模型,忽略了对环境和社会造成的潜在隐患。此外,对自我的计算建模也是当前人工智能领域的一个关键研究问题,具有一定程度自我感知能力的人工智能模型将从本质上更利于自主学习、理解人类的价值观。

赛迪研究院政策法规所所长栾群

赛迪研究院政策法规所所长栾群在报告《人工智能创新发展伦理宣言的核心思想》中指出:当前应用人工智能技术的一些不良的现象和事件不断增多,人工智能相关伦理问题也不断的进入到公众的视线。国务院发的新一代人工智能发展规划,明确要求加强法律法规和道德伦理的制定。2018年7月11日,中国人工智能产业创新发展联盟发布了人工智能创新发展道德伦理宣言。宣言除了序言之外,一共有六个部分,分别是人工智能系统,人工智能与人类的关系,人工智能与具体接触人员的道德伦理要求,以及人工智能的应用和未来发展的方向,最后是附则。人工智能系统,基础数据应该是公平和客观的,采集和使用的时候应该尊重隐私。人工智能系统应该具有相应的技术风险的评估机制,以及要受到科学技术水平和道德伦理法律等人文价值的共同评价。与人类的关系,人工智能的发展应该始终以造福人类为宗旨,不能无论发展到什么阶段,不能改变由人类创造这样一个基本的事实。人工智能与人类的利益或个人合法利益相悖的时候,人工智能应该无条件的有一个停止或者暂停的机制。还要有具体接触人员的道德伦理要求,当然主要但不限于人工智能的研发使用研发者和使用者。人工智能的研发者应该确保其塑造人工智能的系统的自主意识,要符合人类主流的道德伦理的要求。人工智能产品使用者应当遵守遵循产品的既有使用的准则。人工智能的具体接触人员可以根据自身的经验去阐述,但是这种阐述应该本着一个诚实信用的原则,保持理性与客观,不得诱导公众的盲目热情,或者加剧公众的恐慌情绪。人工智能可以提供辅助决策,但是就目前发展来看,人工智能本身不能成为决策的主体。人工智能应该克制在军事领域的应用,也不应该成为侵犯他人合法权益的一个工具。未来的方向简单说就是融合创新,制定人工智能产业的发展标准,推动协同发展,在数据规范应用接口检测检验等各个方面,为消费者提供更好的服务和体验。要打造共性技术的支撑平台,营造人工智能产业生态的健康发展。健全人工智能法律法规。四点思考,第一要重视发展和治理的综合性,来避免计算主义贬低人类的生命。第二要强化人工智能伦理研究的阶段性。第三要建立生态影响评价评估体系。第四是建立人工智能的责任机制。

中国人民大学法学院副教授郭锐

中国人民大学法学院副教授郭锐在《人工智能的伦理标准化》中指出:我们的生活并不是完全由法律来规制的,而只能通过技术的准则、道德、法律规范共同规制。从法律的角度看,有很多问题等到法律去解决可能为时已晚。如果真的要解决问题,要回到技术的基础规则上,把规制的思考、伦理思考结合在技术发展的过程中。这一认识促使我承担了人工智能伦理标准化的研究。当前关于人工智能的伦理问题大致可分为算法、数据和应用方面的伦理问题等短期问题。算法相关问题包括算法安全、算法的可解释性和算法决策的困境。在数据方面,大数据和人工智能的发展,使隐私受到侵害的可能性增加,可能受到侵害的环节也增多了。传统上我们觉得不是隐私的信息,随着新技术的出现,都有可能与个人特征相关,而变成个人敏感信息。在应用方面。算法歧视和算法滥用值得关注。算法歧视有人为造成的歧视、数据驱动的歧视和机器学习造成的歧视。算法滥用往往是因为算法设计者出于自身的利益、过度的依赖算法或者盲目地扩大算法的应用范围造成的。社交媒体中用户的过度沉迷,电商利用消费者价格敏感度不高来设定价格,都属于算法滥用。除了算法、数据和应用这三个维度,我们还引入了时间维度,就是人工智能应用带来的长期风险,诸如就业、产权、竞争和责任分配领域的问题。这些问题并没有一劳永逸的解决方案,为了在现有条件下推进问题的解决,我们提出了两个基本原则:人类根本利益原则和责任原则。我们还据此提出人工智能伦理风险评估的指标和最佳实践指南,希望产学研各个部门和机构能够根据伦理风险的程度进行风险管理。

上海大学教授王天恩

上海大学教授王天恩在报告《类亲历性和人工智能的未来发展》中指出,在通用人工智能进化中,类亲历性是我们要关注的一个重要领域。今天的话题,有一个非常重要的向度就是人工智能的通用化一定是社会化,它不是一个单个的个体能够单独实现的。在很多研究中可以看到支持这一观点的根据。在《失控》这本书中,凯伦·凯勒有一个观点:“非群体系统不能(在生物学意义上)进化”。至少是通用智能进化是不可能以个体的方式进行的,人类进化史已经充分表明了这一点。由此,我们可以看到很多进一步的事实,得到一些进一步的结论。

现在都说目前的人工智能没有真正的理解,刚刚我们有专家也说到,现在的人工智能其实就是高级的自动化。候世达认为目前的人工智能进路完全错了,由此不可能达到真正的机器理解。这正与通用智能的类亲历性密切相关。通用智能意义上的理解,一定是类的行为。理解是一个发育的过程,这与理解所必不可少的语境密切相关。其实新一代人工智能为什么发展那么快,影响那么大,我认为其中一个重要原因,就是通过大数据纳入了人类语境。现在发展很快的智能翻译机,就是最典型的例子。以前的机器翻译是没有语境的,没有语境就不可能有真正的语言理解,但是把大数据纳入人工智能之后,就把人类的语境纳入到人工智能。语境的融合可能是人机融合进化最先开始的领域。由智能进化的类亲历性,还可以看到一个重要的基本事实:通用人工智能与人类智能具有相同的类本性,这使智能进化具有亲历优先原则,广义智能进化以具有亲历优势的人类智能为主导,但这绝不意味着在人工智能发展中人类可以高枕无忧。在广义智能进化过程中,如果在观念上作茧自缚,人类命运就可能走向很多人目前所担忧的结局。如果人类保持观念不断更新,人类就能永远引导智能发展。由此我们可以看到类亲历性之于人工智能的社会、伦理和未来发展所具有的丰富意蕴。

中国社科院哲学所研究员科学技术和社会研究中心主任段伟文

在大会倡议与讨论环节,中国社科院哲学所研究员科学技术和社会研究中心主任段伟文在《迎接人机共生社会的挑战——关于建立“人工智能的社会、伦理与未来研究专业委员会”的倡议》中指出,面对人工智能时代的来临,首先要思考的是我们所面对的未来挑战是什么?简单讲就是知识多到难以把握,世界复杂到无法掌控。相对于我们的理解和把握能力而言,我们创造了太多知识,以至于在面临危机时即便我们已经拥有可能解决危机的知识,也无从知道。召开这次会议的原因一是我们对人工智能的发展后果越来越重视,而我们已有大量知识并不能很好地应对。二是面对人工智能所带来的社会、伦理问题和人机共生社会的未来挑战,我们所掌握的知识变得不够用了。因此,我们在此郑重倡议,在中国自然辩证法研究会建立“人工智能的社会、伦理与未来研究专业委员会”,以此会聚相关领域研究者的智慧、打通学术研究与智库研究、构建整合观点与凝聚共识的研究网络,为促进中国新一代人工智能的健康快速发展做出应有的贡献。

为了积极应对人机共生社会的挑战,我们应该通过其后果与前景的深入研究与预见,将价值与伦理设计和嵌入到人工智能之中,使科技伦理成为科技的有机组成部分和基础。如果中国不仅在人工智能应用而且在人工智能的伦理和落地上走到世界前面,对伦理重视将成为我们的创新优势,这对智能文明在全世界的发展具有重大意义。有人误以为不重视伦理是创新优势,但当伦理问题不可回避时,是非与伦理标准的制定将有利于更好更快地创新。新兴科技包括人工智能的发展具有开放性与不确定性,相应的伦理和治理也应该是开放的和未完成,因此在伦理上应寻求开放性共识,治理上应施以适应性治理。同时,我们还要看到人工智能的发展所带来的去技能化的趋势,探索人机共生社会中人的技能化再生之路,进而寻求人类如何在人机共生社会中保持其尊严与自主性,人在精神上或得拯救与永生,为人类文明探索一条光明的道路。

中国人民大学哲学院刘永谋教授

研讨会在下午继续举行。下午的第三场主题报告由北京农业大学教授、北京自然辩证法研究会理事长李建军,西安电子科技大学人文学院副院长、哲学系主任马德林联合主持。

中国人民大学哲学院刘永谋教授作了题为《技术治理、反治理与再治理:以智能治理为例》的报告。在智能革命的背景之下,技术治理与智能治理成为当前热点研究问题。技术治理试图将自然科学技术的成果用于社会运行尤其是公共治理活动之中,以提高现代社会的运行效率,而智能治理将最新的智能技术运用于治理活动中,属于技术治理新的战术手段,渗透到技术治理所有的重要战略如社会测量、计划体系、智库体系、科学行政、科学管理、科学城市与综合性大工程等之中。首要必须要肯定,将智能技术用于公共治理领域,对于提高社会运行效率和提高公众福祉作用很大,但是也存在智能治理沦为智能操控的危险,因而必须运用技术治理理论来研究智能治理的基本机制。智能治理和所有技术治理一样包括反治理和再治理活动,它们对于技术治理和智能治理的正常运行是建设性的。智能反治理主要涉及5个问题:智能低效、技术怠工、智能破坏、官僚主义智能化和过度治理。研究智能反治理的目的不是为了完全消除它,这是不可能的,而是为了达到治理-反治理的适度平衡,以提高智能治理的水平。智能治理存在各种风险,其中最大的政治风险在于:专家权力过大,威胁民主和自由,极端情况下可能导致机器乌托邦。智能再治理着力从制度上防范智能革命可能导致专家权力过大的政治风险,使智能治理服务于新时代中国特色社会主义建设事业,其核心问题包括:划定专家权力范围,权力越界的纠错制度。

南京大学哲学系潘天群教授

南京大学哲学系潘天群教授做了题为《机器认识论》的报告。认识论是一个传统哲学学科,其研究的是人类的知识是否可能、可靠知识的来源、如何辩护知识等问题。计算机是替代人的智力而得以被建造的,因而,从认识论的角度去思考机器是一个有趣的角度。既然人类的知识是涉身的,机器(人工智能体)拥有知识是否可能?如何理解机器的所谓推理以及知识学习?等等,这些便是机器认识论的内容。他认为机器具有演绎推理的能力,能够做有意义的演绎工作。纯粹的演绎推理被认为不能得到新知识。“演绎无新知”是建立在逻辑全能的基础之上的。如果演绎无新知,从事数学证明工作的那些数学家的工作便没有多少意义的了。某个定理之被证明本身便是一个有意义的工作。一个能够认识自然的机器是含有人类概念化的系统,并对它所“观察”的信息进行判断形成知识。这是一个“准人类”甚至“超人类”的智能体。想象一下,这样的智能体到太空中某个星球上通过信号“告知”我们,那儿有一种类似水的东西,外表与地球上的水完全一样,但其结构不是氢二氧一。它的观察方式是我们能够理解的,因而它告知我们的结论也是我们能够想象的。它们将接触到的信息整合成知识便是一个知识形成过程,这个函数便是知识形成函数。我们知道这个函数,因而能够理解它所说的。

中国社会科学院副研究员张昌盛

中国社会科学院副研究员张昌盛做了题为《意识与人工智能的限度》的报告。很多人工智能伦理研究都提到类主体、机器人的权利问题,还有像倪梁康等人谈人工意识。简单来说,很多对人工智能伦理问题的讨论都预设了一种强人工智能的立场。20世纪60年代以来,德雷福斯(HubertLedererDreyfus)多次批判说,功能主义的人工智能无法模仿海德格尔式的人与世界的存在论关系模式,也不是梅洛-庞帝的具身性的认知主体,达不到人的认知水平。塞尔基于生物自然主义对德雷福斯提出批评。塞尔认为,功能主义基于一种狭义算法,而人类大脑的生物运动神经元的活动乃至宇宙当中的所有的事物的运动也是一种广义的算法。只要我们找出了类似于人类的生物算法,那么类似于人类的智能乃至意识在理论上是可以实现的。因此,德雷福斯所谓主体的具身性及其与世界的生存论关系终究可以用广义的算法描述。

他认为,强人工智能不能实现。基于物理主义无法解决意识的“感受性质”问题。按照查尔莫斯的“哲学僵尸”论证,如果坚持物理主义,有智能并不一定有意识、智能机器永远没有体验,不知道自己在干什么。而且,人的意识也并不是基于仅仅基于生物的神经元基础。虽然人工智能不能产生意识,但是它可能逐渐逼近人的认知,弱人工智能应该是人的一种有力的工具。

我们思考人工智能的实现前景及应用影响时,有一些基本的问题始终拷问着伦理和哲学:人工智能本质到底是什么?他有没有意识,算不算主体?同时,人类的独特性是什么?人类的尊严在哪里?和近现代以来的人文主义理想可否保持?为了回答这些问题,我们不能不反思我们的基本理论预设,必须回溯到人工智能的本质、主体、意识这样一些最基础层面的问题。

北京工商大学的王东讲师

北京工商大学的王东讲师做了题为《智能时代科学发现的哲学反思》的报告。历史上新技术的出现总会带来新的科学发现,随着科学研究中的数据快速积累,使得数据驱动和智能驱动的科学发现成为可能,在天文学,高能粒子,合成化学,计算社会科学等领域都有应用。对于人工智能在科学中冷起到什么作用,在多大程度上能够替代科学家存在争议。有人认为人工智能与大数据方法等存在黑箱问题等各种局限,最终只能是科学家的一种辅助手段,其作用是让科学家能够处理大量的数据,但科学发现的核心过程还是需要人类本身的能力。而另一些则认为人类本身具有先天的认知缺陷,机器不仅能弥补甚至可能在各方面比人类做的还要好。当然更多的是折中综合的观点,认为应该取长补短共同发展,数据驱动方法与理论驱动方法可以相互结合,人与机器应该各尽所能,而当前需要关心的是如何协调好两者的互动关系。

科学家以及哲学家们对数据驱动和智能驱动的科学发现在科学方法论上的争论主要受到两个因素的影响:1.不同的科学研究领域和科学发现层次;2.对于是否存在科学发现的逻辑以及科学活动能否形式化的不同看法。

而争论的核心则是科学中的相关性与因果性的关系以及因果性能否形式化。当前因果机器推理的两个主要理论即潜在因果模型和因果图模型都有各自的问题,例如前者需要随机实验后者需要先验知识和严格的条件。所以短时间内在不考虑强人工智能的情况下,人工智能还只是一种工具没法涉及理论创新。

上海大学哲学系系主任杨庆峰教授

上海大学哲学系系主任杨庆峰教授做了《人工智能取代人类工作的哲学反思》的报告。他认为人工智能与人类整体关系具有双重维度:第一是物质性活动维度,即智能机器能否取代人类实践活动;第二是精神性活动维度,即机器智能能否超越人类智能。前者的设定是智能机器是人类的辅助性助手,取代人类活动的本质是人类活动的自动化趋势及其机器活动的涌现;后者更多触及的是人工智能的终极指向,涉及到通用人工智能和强人工智能的问题。面对人类被取代的未来前景,存在着四种态度:“批判”、“审视”、“适应”和“狂欢”。这四种态度缺乏对于人工智能的恐惧,只有持有人类对于人工智能的“恐惧”和“畏惧”,才能够导致合适的智能人文意识的发生,从而构建起人类与智能机器的自由关系。

上海交通大学副教授闫宏秀

上海交通大学副教授闫宏秀向研讨会做了《人工智能信任度的伦理解析》的报告。人工智能所带来的机遇与挑战,引发了全球社会各界的多维度反思。其中,关于人工智能的伦理思考是其中的一个主要议题。关于伦理方面的思考,事实上源自是关于人与技术关系的再度厘清与辨析。在这种厘清与辨析之中,人的伦理地位、技术的伦理意蕴、人与技术之间的伦理牵连、对人工智能技术图景的伦理描绘等问题被渐次呈现出来。在“以人为中心的人工智能(Human-CenteredAI)”、“人工智能伦理将是未来智能社会的发展基石”、2019年3月到4月之间,谷歌关于外部专家委员会(AdvancedTechnologyExternalAdvisoryCouncil)的风波等一方面是人工智能亟待伦理的参与,另一方面则反应了人工智能伦理构建中正在面临诸多问题。因此,需要对人工智能伦理为何以及何为进行深度解析。关于此,欧盟基于其伦理、安全、和尖端人工智能愿景,发布了《人工智能信任度的伦理框架》。对该框架的伦理逻辑、伦理预设、以及如何正确信任的解析将为人工智能伦理的构建提供有效的理论基础。

华东理工大学科学技术与社会研究所所长黄时进副教授

第四场主题报告由中国人民大学的刘永谋教授和北京航空航天大学的徐治立教授联合主持。

华东理工大学科学技术与社会研究所所长黄时进副教授做了题为:《未来的科学传播:基于人工智能的视角》的报告。他认为科学传播最初的形态被界定为“欠缺模型”(deficitmodel)的传统科普,经过20世纪80年代中期开始的公众理解科学(PublicUnderstandingofScinece)阶段,发展至今的公共参与(PublicParticipationorPublicEngagement)阶段,传播媒介也从牛顿时代的皇家学会期刊、报纸和图书,到20世纪的广播、电视、电影,至21世纪今天的网络时代,微信、微博、甚至抖音快手等新兴媒体成为科学传播的重要媒介。当代人工智能的兴起,为科学传播产生了积极的影响:其一是人工智能让科学传播中客体的“主体间性”(intersubjectivity)得到实现,真正进入公众参与科学传播阶段。借助人工智能的强大数据搜寻、识别和分析能力,普通公众可以相对容易获取自己需要的、浅层的科学技术知识。其二人工智能借助智能机器人极大提升科学传播的效用,特别是面向儿童青少年的科学传播,人机交互将成为主要形态,人工智能机器人将通过互动模式帮助儿童青少年儿童从小爱科学、用科学,提高动手能力,培养科学思维和科学精神。其三人工智能将淡化科学传播中的科学家的专长,而强化公众的交互思维和认知能力。在科学传播中,公众的交互思维素养主要基于人工智能时代人们交往方式的变化而得以提高,具体表现在学会开源共享、参与协商、组建社区等,理解复杂的相互关系等。同时独立思考、逻辑推理、信息加工等高阶认知能力得以提升。在人工智能的帮助下,未来的科学传播呈现以下三个特征:“深度社会化”、“个性化”和“持续自我创新化”。

中国人民大学哲学院的王小伟副教授

中国人民大学哲学院的王小伟副教授所做报告的题目是:《道德物化的意义》,向诸位学者介绍了技术哲学中的荷兰学派的一些研究。他认为近年来荷兰学派技术哲学收到普遍关注,况且荷兰确有一群很好的学者在做技术哲学工作。但细看会发现该学派并无统一研究纲领。维贝克(Peter-Paul-Verbeek)的研究方法是后现象学外加一些技术权力论。提出经验转向的克劳斯(PeterKreos)则基本上是分析的办法,做人工物本体论。乌得勒支大学伦理中心主任杜威尔(MarcusDuwell)则从康德和格沃斯传统来讨论技术伦理问题。方法虽有不同,但他们都有道德物化的诉求。克劳斯和佛贝克,包括梅耶斯(AntonieMeijers)联合编了一些人工物道德属性的书。如果荷兰技术哲学有个学派的话,道德物化是一个显著的标志,尽管不同学者的道德物化认识论基础不尽相同。

所谓道德物化,简单讲就是道德主体即不单是人也不单是物,而是人和物的集合。这意味着物本身不是价值中立而是负载道德的。因此,在设计物时,应有价值自觉地试图把公共善嵌到人工物里去。进而通过物的发端流行来实现善。安全带就是一种道德物化技术。系统会不断报警迫使你扣上它。道德物化概念一经介绍就引起了轰动。支持者认为可以通过物化道德来更好的实现善的生活(goodlife)。好处不论,这里主要介绍相关质疑。

佛贝克将质疑观点概括为三。一是自由侵害论;二是道德取消论;三是技治主义论。自由侵害论认为道德物化会侵害自由。康德认为人之为人是因其有自由理性的能动性(freerationalagency)。如在用物时,人被操纵,非自由地践行价值,那么自由将遭到侵害,尊严受到冒犯。在道德哲学情境中,人的尊严(humandignity)通常是一个红线词汇。一旦触碰,即遭禁止。道德取消论认为如果道德统统被嵌入进人工物,人符合道德要求的行为的道德性即被剥夺。因为它仅仅是符合并非出于道德要求。康德认为只有出于义务的行为(actfromduty)才道德,仅符合(actinaccordancewithduty)义务并不是。如果用物使得行为自然符合义务,道德就被取消了。被安全带噪音骚扰,不厌其烦地系上它并不是一个道德行为。最后,技治主义论认为道德物化给工程师过度赋权。绝大多数老百姓注定没有工程和设计知识,因此必然把道德抉择让渡给了专家。技术专家来衡量好坏,进行价值排序,进而决定物化和实现什么价值。这从根本上是反民主的。佛贝克虽然列举了以上问题,但他并未从认识论角度回应以上挑战。我认为道德物化实际上应该叫价值物化。被物化的特定的价值而不是道德。道德按照康德说法预设主体的内在心理过程,即按照理性的要求拒斥本能。道德物化取消了主体的道德自治,也就无所谓道德。

南开大学哲学院陶锋副教授

南开大学哲学院陶锋副教授做了题为:《美的理性:马克思主义与人工智能美学》的报告。在报告中,他指出人工智能艺术的出现,使得人们需要重新思考美的规律、艺术与科技、理性与人类解放的关系。“美的理性”人工智能美学中核心问题,是基于马克思、本雅明、阿多诺和马尔库塞等思想家对理性和美学的探讨之上所提出来的,它包含了两个层面:首先是“美的规律”。人工智能可以模拟人来生成艺术,为艺术的规则化、算法化提供了可能。人工智能艺术可以分为三个层面:1.人工智能生成艺术;2.人工智能本身是艺术与科技的结合;3.人工智能与网络、大数据结合发展的超级智能,可能会实现社会艺术、人类艺术。人工智能美学研究还包括情感、创造性等如何实现算法化。而目前的人工智能艺术的目的主要还是为了技术所服务。

“美的理性”另一层面是“理性之美”。法兰克福学派批判了工具理性。而这种技术理性进一步发展成了设计理性:智能、生命都是可以设计的了。但是无论是工具理性还是设计理性,理性都是一种未能实现自律的工具。因此,理性要想实现自律,就需要实现技术、艺术的自律,适当去除政治维度,不能仅仅发展“美的德性”。理性的自律还要求理性要有限度——“有限的理性”,即正确处理技术与艺术、人与自然、主体与客体的关系。阿多诺认为,我们可以用艺术中摹仿要素来纠偏工具理性,从而实现和解。我们发展人工智能的同时,也需要思考如何以“美的理性”作为基本原则,让人工智能适度发展、着力于提升人类社会的美与和谐。“美的理性”是美的规律和理性之美的统一,人工智能在艺术和美学的发展,可以为这种统一提供一个契机。

人工智能美学还涉及到了人类解放问题。马克思在其机器与劳动理论中,提到了机器取代人的体力劳动,却加剧了人的劳动异化程度。人工智能技术则进一步地会取代人的脑力劳动,而这似乎加深了人的异化程度。本雅明所提到的“文学的技术”和“审美生产”变成了异化劳动。人工智能艺术正在成为文化工业中重要部分,人们的闲暇被娱乐工业所控制,一些基于人工智能和大数据技术的娱乐app如“抖音”,使得艺术和娱乐被精确计算了。人类或许永远无法回到“感性”状态,人与自然被人工之物彻底中介和隔离了。这种情况下,“美的理性”更有实践意义。理性被美所引导,技术为实现人类美好生活所服务,人类和社会成为美的艺术。

中国社会科学院哲学研究所研究员段伟文

中国社会科学院哲学研究所研究员,即这次研讨会的筹划人段伟文做了题为《机器智能的非人格化权力与主体重塑》的报告。他认为数据驱动的机器智能正在成为一种新的主体型范机制:智能治理和智能化自我治理(如量化自我等)。这与福柯有关主体的塑造的权力技术和自我技术有关,两者分别为支配他人的技术和支配自我的技术;同时,又涉及到德勒兹在《尼采与哲学》中探讨过的能动力与反动力。在尼采的由力所构筑的世界观中,人的意志是能动力与反动力等力的关系的产物,主体的塑造是由特定的力与力之间的关系所形成非人格化的权力运作的结果。数据驱动的机器智能对主体的型范或塑造所采用的是关联本体论而不是关系本体论/实在论或属性本体论/实在论,这一特质使权力技术与自我技术、能动力与反动力呈现为一种微分式的非人格化权力。这意味着,拉图尔的异质性行动者网络和西蒙栋的个体化(individualization)等主体塑造机制将受到挑战:由机器智能所塑造的主体可能会丧失其能动性,而成为智能治理这一新的权力技术在数据向量空间中进行微细预控的对象。实际上,算法权力从权力谱系上与现代以降的测量的权力、档案的权力、索引的权力一脉相承,不论是智能监控、内容推荐还是量化自我,都在一定程度上将主体的个体化转换为碎片化的数据标签或德勒兹的控制社会意义上的算法“分格”。这种基于数据的机器智能的社会运用与其说是对主体的行为预控,毋宁说是对主体潜能的抑制。

为了应对机器智能的非人格化权力,主体可在智能化的生活中探索有助于提升主体塑造的自主性与能动性的生活策略,以寻求更加人性化的主体重塑进路。其一,反思智能化关注与认知中主体的角色。先厘清主体究竟是被观看与分析者还是观看与分析者,在此基础上探索反向智能关注与自我智能关注的可能性,进而揭示出数据智能背后的虚拟的主体性与外在的能动性,使主体的数据孪生成为其自身可掌控的开放性的个体化过程,而非被操控且丧失自我改变潜能的数据僵尸。其二,审度智能化时代的知识与自由之关系。以反思数据行为主义对人的生成性和自我改变潜能的抑制为切入点,探寻机器智能的限度,实现从有为的自由(做一切可为之事的自由)到无为的自由(不做能做之事的自由)、从“无止境的知识探寻”到“有选择的无知”的权力的莫比乌斯翻转。

浙江大学马克思主义学院潘恩荣教授

第五场主题报告由北京理工大学的范春平教授和中国社会科学院研究员梁俊兰主持。

浙江大学马克思主义学院潘恩荣教授所做报告的题目是《面向技术本身的人工智能伦理框架——以自动驾驶为例》。他认为技术与伦理的相互对立甚至对立是目前人工智能产业界难以应对伦理挑战的根源之一。例如,自动驾驶产业化过程中碰到了电车难题,技术专家不知道怎么办,于是,技术专家请伦理专家给出解决方案。然而,伦理专家也无法承受如此之重任,因为他无权决定谁应该被撞死。

将技术与伦理融合为一种面向技术本身的人工智能伦理框架,我们可以避开或者破解上述难题。人工智能伦理问题发生在人工智能技术(人工物)的使用情景中,即人工智能技术(人工物)介入了人与人之间,改变了原来“应该的人与人的关系”而引发了新的冲突——伦理问题。从一个人工智能的使用情景出发,追溯到设计情景当中,我们可以把人工智能伦理与人工智能技术问题放在一个框架中进行考量,将有助于解决自动驾驶的问责问题。

下一步做研究有三个可能路径。第一个是在第二种经验转向基础上结合伦理转向,走向价值论转向;第二个是科学的实践哲学研究进路,将伦理实践跟科技实践结合起来;第三个是马克思主义人工智能哲学或者人工智能马克思主义的进路,在协作分工基础上形成的包含伦理的制度,最后固化到机器或代码上。

上海师范大学马克思主义学院副教授苏令银

上海师范大学马克思主义学院副教授苏令银做了题为:《论智能时代道德机器创造的伦理挑战》。在报告中,他认为基于人工智能的巨大技术进步,完全自主的、类人化的、能够进行伦理推理和决策的智能机器的出现似乎是不可避免的。然而,非伦理学家(如计算机科学、人工智能和机器人领域的研究人员和程序员)在创造道德机器时所面临的伦理挑战。伦理是否“可计算”首先取决于程序员如何理解伦理,以及他们对这些领域中的伦理问题和方法论挑战的理解是否充分。

从道德决策的哲学基础看,机器缺乏自由意志,而自由意志本身通常被理解为是道德能动性的先决条件。基于自由意志反对由于智能机器算法的性质而否定它们的道德能动性,这是无法令人信服的。詹姆斯.摩尔对各种形式的道德能动者进行了重要的区分。没有理由不认真考虑智能机器成为完全的道德能动者的可能性。对于如何实现智能机器的道德决策和道德推理已经有了一些尝试比如自下而上的方法;自上而下的方法;混合方法;其他方法,如基于网络的方法、佛教的方法等决策系统模型。

上述领域研究人员和程序员由于普遍缺乏伦理专业知识,至少面临两种类型的问题:一是伦理专业知识的缺乏。这类问题可以通过向这些人提供必要的道德知识来解决;二是更困难的方法论问题。这涉及学界在伦理学方面存在分歧的领域,目前没有容易的解决办法。道德专家们对于使用哪种伦理理论没有共识,比如电车难题和机器偏见等。伦理学中有着几个长期存在的方法论问题,比如正当性问题和多元主义伦理理论问题,即使是道德哲学家也没有解决。对这些类似问题的熟悉可以帮助他们避免陷阱,构建更好的道德机器。道德机器的伦理决策应以避免不道德行为为基础并与解决道德问题的多元伦理方法相结合,而不是依赖于特定的伦理方法来避免规范的偏见。

未来很可能出现一种道德机器,它能够在没有任何人类监督的情况下自主地进行伦理推理和决策。机器人伦理学研究表明,研究人员和程序员需要向伦理学家寻求建议,以便更好地理解伦理学中根深蒂固的方法论问题。如果他们不适当地处理这些问题,他们创造适当的道德机器的努力将受到严重破坏。如何判断哪些行为在道德上是正确的,是我们生活中最困难的问题之一。理解这些决策所涉及的伦理陷阱和挑战,对于创造智能的、公正的道德机器是绝对必要的。

大连理工大学哲学系讲师于雪

大连理工大学哲学系讲师于雪向参会学者做了题为《人工智能伦理准则建构的方法论问题》的报告。随着人工智能2.0时代的来临,大数据智能、群体智能、跨媒体智能、混合增强智能和自主智能逐渐走向成熟。同时,“人工智能+互联网+区块链”的技术合作模式激发了人工智能技术在各个领域的应用,掀起了新一代技术革命。在这样的时代背景下,建构人工智能的相关伦理准则不仅重要而且必要。但是,人工智能伦理准则的建构并非易事,这其中存在着文化困境、伦理规范的困境、利益相关者的价值困境,以及技术困境这四个方面的问题。建构适宜的人工智能伦理准则首先需要克服这些困境,具体的逻辑建构体系包括人工智能语言体系、人工智能价值体系、人工智能标准体系、人工智能责任体系和人工智能评价体系五个方面。并且,人工智能伦理准则的建构需要以“实践智慧”为核心,及时有效地调整人工智能伦理标准的实施方法,以弹性伦理原则为核心,力求最大程度地实现人工智能伦理准则的实践有效性。

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。返回搜狐,查看更多

如何认识人工智能对未来经济社会的影响

原标题:如何认识人工智能对未来经济社会的影响

人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。

人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。

总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。

作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。

一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。

另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。

当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。

(作者单位:国务院发展研究中心创新发展研究部)

(责编:赵超、吕骞)

分享让更多人看到

人工智能伦理规范难题如何走出困境

“人工智能可谓是21世纪最有前景的新兴技术之一,其在自动驾驶、语音识别等方面已经取得了诸多重大突破,但在其商业化应用过程中也出现了不少意外的负面后果,其中浮现出的人工智能伦理风险,为技术健康持续发展和商业化落地带来了新的挑战。”

路易斯维尔大学罗曼(RomanYampolskiy)教授发表的《人工智能和网络安全:人工智能的失败》中列举的人工智能失败案例中,除了我们熟知的特斯拉自动驾驶事故,还有一类特别的“道德”事故,像谷歌搜索中出现的黑人与色情、暴力信息相关联、保险公司利用脸书数据预测交通事故率等失败案例,让人工智能引发的道德风险开始引起越来越多人关注。

人工智能道德风险归因于人类认知能力局限

坚持“技术工具论”的人会说人工智能不过是个产品,怎么能具有伦理属性,而还有一部分被称为“技术实体论”的人也坚持说人工智能有能力也有权利具有自主意识和情感。不论孰是孰非,争论本身就代表着伦理道德风险的存在。

人工智能反映出的道德隐患可以从两方面归因。第一可以归结为人工智能系统在算法设计和学习阶段的错误,第二可能源于人工智能技术结果难以预见和难以以人力量化评估的问题。但究其本源还是人类的有限理性所致。

人类自身认知能力的限制,使人工智能越来越近人甚至在某些方面远超人类时,人类理性已经开始滞后于人工智能的发展速度。最终引发了对人工智能的担忧和道德批判。

而在算法的世界里,人工智能没有能力担忧,或许他们也并不感到担忧,甚至在他们“看来”,人类的某些道德是多么的荒谬。这种未知性也更加深了人类对人工智能道德伦理的担忧。

人工智能伦理待规范责任主体权利归属难

人工智能技术可以说是第一个对人文伦理产生挑战的技术应用,他极可能或正在重塑着人类的社会秩序和伦理规范。

对于人工智能的伦理问题,目前学界关注的重点大多集中在技术应用的责任伦理上。随着人工智能自主能动性的提高,技术使用和监管责任才是最突出的伦理难题——如何确定人工智能技术活动机器后果的责任主体,是人工智能发展必须考虑的问题。

这方面问题涉及到哲学伦理,因而很难被大众讨论。但人工智能表现出的伦理问题,却也与普通人的日常息息相关。

譬如虽然人工智能在速度、精度等方面远高于人,但在大数据运行过程中常会出现算法偏差和歧视问题,像在谷歌搜索中,相比搜索白人名字,黑人名字更易与暗示犯罪、暴力的广告和内容相关联。

在责任主体方面,虽然“机器比人聪明”并非机器替代人类掌握控制权的充要条件,但这一优势也高度反应了智能技术中人类主体权利的隐忧。人类为自我负责源于自我决定权,同时意味着自我风险、行为后果的承担能力。

以自动驾驶汽车为例,人工智能驾驶的汽车拥有自主决定权后,可以有效避免醉酒驾驶、疲劳驾驶等不合法人为错误。

但相应责任转移给人工智能算法后,当智能汽车面临无人驾驶版“电车难题”时,人工智能应该杀掉少部分人保全大部分人,还是仅仅保护车内人员安全等等困局,都难逃责任主体权利归属的拷问。是“技术漏洞”还是“使用不当”抑或是“算法”擅自所谓,这一问题至今无解。

开发伦理嵌入技术应对人工智能伦理风险

关注人工智能技术带来的机器伦理问题,提升人工智能技术的安全性。首先在技术层面,未来可以通过嵌入伦理准则,制定完善设计原则等方式,规避人工智能潜在道德风险。

美国科幻作家阿西莫夫的“机器人三定律”经典地诠释了机器人所应遵从的基本道德规范,在《我,机器人》中,机器人被集体嵌入了道德定律,以此规范人工智能的行为。而在现实中,人工智能的道德也是可以被预设的。

虽然道德嵌入技术暂未实现,但其一直被视为人工智能伦理风险规避的主要手段。社会学家布鲁诺·阿图尔称其为“将装置道德化”,将道德规范对人的约束转变为对物的“道德嵌入”。

除了加紧对道德嵌入技术的开发,还要在设计环节增强道德风险意识,在设计之初预测和评估人工智能产品可能引发的道德危害,从设计源头进行规范。现今暴露的诸多人工智能道德失范问题,实则也是算法设计的疏漏。

尽管对于人工智能技术,还有很多未知领域等待我们探索,但最重要的是必须坚持以理性、积极的心态应对人工智能带来的技术革命。正如兰登·温纳在《自主性技术:作为政治思想主题的失控技术》中所说的,“失控不是技术本身的错,只是人们想象泛滥疑惑勇气的缺失。”

【科技云报道原创】

人工智能迫切需要一个“伦理转向”

原标题:人工智能迫切需要一个“伦理转向”

当前人工智能的发展主要受益于以深度学习为代表的机器学习技术,这让计算机可以从大量数据中自主学习与进化,从而作出比人类更高效、更精准、更廉价的预测与决策。正因如此,人工智能作为新的通用型技术,被认为将给经济和社会带来变革性影响,已被各国上升到国家战略和科技主权高度,成为不断升温的全球科技竞争的新焦点。

在应用层面,人工智能已经渗透到各行各业,算法帮我们过滤掉垃圾邮件,给我们推荐可能喜欢的歌曲,为我们翻译不同的语言文字,替我们驾驶汽车。新冠肺炎疫情暴发以来,人工智能在辅助医疗诊断与新药研发等方面崭露头角,无人物流配送、无人驾驶汽车等新模式助力非接触服务发展。总之,人工智能潜力巨大,可以成为一股向善的力量,不仅带来经济增长,增进社会福祉,还能促进可持续发展。

但与此同时,人工智能及其应用的负面影响与伦理问题也日益凸显,呼吁人们在技术及其产业化之外更加关注伦理视域。例如,人工智能模型训练及其应用离不开大量数据的支持,可能导致违法违规或过度收集、使用用户数据,加深人工智能与数据隐私保护之间的紧张关系;人脸识别技术在一些场景的应用也引发了国内外对该技术侵犯个人隐私的争议。人工智能技术也可能被不法分子滥用,例如用来从事网络犯罪,生产、传播假新闻,合成足以扰乱视听的虚假影像等。

随着算法歧视的不断发酵,人工智能参与决策的公平性问题也备受关注。有研究发现,很多商业化的人脸识别系统都存在种族、性别等偏见,这样的技术用于自动驾驶汽车,就可能导致黑人等深色皮肤的人更容易被自动驾驶汽车撞到。人工智能在招聘、广告投放、信贷、保险、医疗、教育、司法审判、犯罪量刑、公共服务等诸多方面的应用也伴随公平性争议。此外,人工智能的知识产权保护问题也日益浮现,目前人工智能已能够独立创造诗歌、小说、图片、视频等,知识产权制度将需要尽快回应人工智能创造物的保护问题。自动驾驶汽车、AI医疗产品等人工智能应用一旦发生事故,也面临谁来担责的难题。最后,人工智能的应用可能取代部分手工的、重复性的劳动,给劳动者就业带来一定冲击。

2020年被认为是人工智能监管元年,美欧采取的监管路径大相径庭。欧盟《人工智能白皮书》提出的“重监管”模式更多倚重事前的规制,考虑为技术开发与应用设置严苛条件;美国《人工智能应用监管指南》提出的“轻监管”模式更多倚重标准、指南等弹性手段,考虑为人工智能应用设置避风港、“监管沙箱”等。在全球科技竞争日趋激烈、数字经济日趋成为国家核心竞争力等背景下,考虑到我国科技行业发展实际,我国对人工智能需要创新治理,倚重敏捷监管、伦理治理、技术治理等多元手段来共同确保人工智能正向应用与向善发展。

首先,监管不仅需要对人工智能应用分级分类、以问题和风险防范为导向,而且需要具有敏捷性与适应性。人工智能技术的一个核心特征是快速发展迭代,制定强制性法律必然赶不上技术发展步伐,所以国外大都采取出台指南、伦理框架等“软法”。此外,自动驾驶汽车、智能医疗等人工智能应用的发展落地仍面临较多法规政策障碍,需要考虑修订阻碍性的法律法规,同时通过“数字沙箱”“安全港”“试点”等方式推动其试验与应用落地。

其次,采取伦理治理,把伦理原则转化为伦理实践。目前,国内外很多科技公司都出台了人工智能伦理原则,也在通过伦理审查委员会、伦理嵌入等方式落实其伦理原则。行业的这些伦理治理措施已在国内外获得较大共识,更能适应AI技术发展。

再次,以技术手段防范人工智能滥用。例如,深度合成作为一项人工智能应用,在影视制作、教育、医疗、娱乐等领域具有很大正向应用价值,但也可能被不法分子滥用来制造、传播虚假影像以从事欺诈欺骗活动。对此,行业内已在积极研发、部署内容鉴别与溯源技术,以对抗深度合成的滥用。面对复杂性与迭代速度不断增强的人工智能应用,技术治理将发挥越来越大的作用。

(作者:曹建峰,系腾讯研究院高级研究员)

(责编:赵超、吕骞)

分享让更多人看到

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇