信息技术发展史及其趋势
0 引言
从人类信息交流和通信的演化进程可以清楚地体会信息技术的不断发展性。现代信息技术具有强大的社会功能,已经成为21世纪推动社会生产力发展和经济增长的重要因素。信息技术在改变社会的产业结构和生产的同时,也对人类的思想观念、思维方式和生活方式产生着重大而深远的影响。
1 信息技术发展史1.1信息技术简介信息技术的研究包括科学,技术,工程以及管理等学科,这些学科在信息的管理,传递和处理中的应用,相关的软件和设备及其相互作用。
信息技术
信息技术的应用包括计算机硬件和软件,网络和通讯技术,应用软件开发工具等。计算机和互联网的普及以来,人们日益普遍的使用计算机来生产、处理、交换和传播各种形式的信息(如书籍、商业文件、报刊、唱片、电影、电视节目、语音、图形、影像等)。在企业,学校和其它组织中,信息技术体系结构是一个为达成战略目标而采用和发展信息技术的综合结构。它包括管理和技术的成分。其管理成分包括使命、职能与信息需求、系统配置、和信息流程;技术成分包括用于实现管理体系结构的信息技术标准、规则等。由于计算机是信息管理的中心,计算机部门通常被称为“信息技术部门”。有些公司称这个部门为“信息服务”(IS)或“管理信息服务”(MIS)。另一些企业选择外包信息技术部门,以获得更好的效益。
1.2信息技术定义人们对信息技术的定义,因其使用的目的、范围、层次不同而有不同的表述:
1)、信息技术是指有关信息的收集、识别、提取、变换、存贮、传递、处理、检索、检测、分析和利用等的技术。
2)、信息技术包含通信、计算机与计算机语言、计算机游戏、电子技术、光纤技术等。
3)、现代信息技术以是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。
4)、信息技术是指在计算机和通信技术支持下用以获取、加工、存储、变换、显示和传输文字、数值、图像以及声音信息,包括提供设备和提供信息服务两大方面的方法与设备的总称。5)、信息技术是人类在生产斗争和科学实验中认识自然和改造自然过程中所积累起来的获取信息,传递信息,存储信息,处理信息以及使信息标准化的经验、知识、技能和体现这些经验、知识、技能的劳动资料有目的的结合过程。
6)、信息技术是管理、开发和利用信息资源的有关方法、手段与操作程序的总称。
7)、信息技术是指能够扩展人类信息器官功能的一类技术的总称。
8)、信息技术是指应用在信息加工和处理中的科学,技术与工程的训练方法和管理技巧;上述方法和技巧的应用;计算机及其与人、机的相互作用,与人相应的社会、经济和文化等诸种事物。
9)、信息技术包括信息传递过程中的各个方面,即信息的产生、收集、交换、存储、传输、显示、识别、提取、控制、加工和利用等技术。
广义而言,信息技术是指能充分利用与扩展人类信息器官功能的各种方法、工具与技能的总和。该定义强调的是从哲学上阐述信息技术与人的本质关系。
中义而言,信息技术是指对信息进行采集、传输、存储、加工、表达的各种技术之和。该定义强调的是人们对信息技术功能与过程的一般理解。
狭义而言,信息技术是指利用计算机、网络、广播电视等各种硬件设备及软件工具与科学方法,对文图声像各种信息进行获取、加工、存储、传输与使用的技术之和。该定义强调的是信息技术的现代化与高科技含量。
1.3信息技术发展简史人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。千百年来,人们一直在用语言、图符、钟鼓、烟火、竹简、纸书等传递信息,古代人的烽火狼烟、飞鸽传信、驿马邮递就是这方面的例子。现在还有一些国家的个别原始部落,仍然保留着诸如击鼓鸣号这样古老的通信方式。在现代社会中,交通警的指挥手语、航海中的旗语等不过是古老通信方式进一步发展的结果。这些信息传递的基本方都是依靠人的视觉与听觉。下面我们来看看信息技术发展的历程:
第一次信息技术革命是语言的使用,发生在距今约35000年~50000年前。
第二次信息技术革命是文字的创造,大约在公元前3500年出现了文字。
文字的创造——这是信息第一次打破时间、空间的限制
陶器上的符号:原始社会母系氏族繁荣时期(河姆渡和半坡原始居民)
甲骨文:记载商朝的社会生产状况和阶级关系,文字可考的历史从商朝开始
金文(也叫铜器铭文):商周一些青铜器,常铸刻在钟或鼎上,又叫“钟鼎文”
第三次信息技术的革命是印刷的发明,约在公元1040年,我国开始使用活字印刷技术(欧洲人1451年开始使用印刷技术)。
印刷术的发明
汉朝以前使用竹木简或帛做书材料,直到东汉(公元105年)蔡伦改进造纸术,这种纸叫“蔡侯纸”。
从后唐到后周,封建政府雕版刊印了儒家经书,这是我国官府大规模印书的开始,印刷中心:成都、开封、临安、福建阳。
北宋平民毕升明活字印刷,比欧洲早400年
第四次信息革命是电报、电话、广播和电视的发明和普及应用。
19世纪中叶以后,随着电报、电话的发明,电磁波的发现,人类通信领域产生了根本性的变革,实现了金属导线上的电脉冲来传递信息以及通过电磁波来进行无线通信。
1837年美国人莫尔斯研制了世界上第一台有线电报机。电报机利用电磁感应原理(有电流通过,电磁体有磁性,无电流通过,电磁体无磁性),使电磁体上连着的笔发生转动,从而在纸带上画出点、线符号。这些符号的适当组合(称为莫尔斯电码),可以表示全部字母,于是文字就可以经电线传送出去了。1844年5月24日,他在国会大厦联邦最高法院议会厅作了“用导线传递消息”的公开表演,接通电报机,用一连串点、划构成的“莫尔斯”码发出了人类历史上第一份电报:“上帝创造了何等的奇迹!”实现了长途电报通信,该份电报从美国国会大厦传送到了40英里外的巴尔的摩城。
1864年英国著名物理学家麦克斯韦发表了一篇论文(《电与磁》),预言了电磁波的存在,说明了电磁波与光具有相同的性质,都是以光速传播的。
1875年,苏格兰青年亚历山大.贝尔发明了世界上第一台电话机,1878年在相距300千米的波世顿和纽约之间进行了首次长途电话实验获得成功。
电磁波的发现产生了巨大影响,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般的涌现:1920年美国无线电专家康拉德在匹兹堡建立了世界上第一家商业无线电广播电台,从此广播事业在世界各地蓬勃发展,收音机成为人们了解时事新闻的方便途径。1933年,法国人克拉维尔建立了英法之间的第一条商用微波无线电线路,推动了无线电技术的进一步发展。
1876年3月10日,美国人贝尔用自制的电话同他的助手通了话。
1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。
1895年俄国人波波夫和意大利人马可尼分别成功地进行了无线电通信实验。
1894年电影问世。1925年英国首次播映电视。
静电复印机、磁性录音机、雷达、激光器都是信息技术史上的重要发明。
第五次信息技术革命是始于20世纪60年代,其标志是电子计算机的普及应用及计算机与现代通信技术的有机结合。
随着电子技术的高速发展,军制、科研、迫切需要解决的计算工具也大大得到改进,1946年由美国宾夕法尼亚大学研制的第一台电子计算机诞生了。
1946~1958年第一代电子计算机
1958~1964年第二代晶体管电子计算机
1964~1970年第三代集成电路计算机
1971~20世纪80年代第四代大规模集成电路计算机
至今正在研究第五代智能计算机。
为了解决资源共享问题,单一计算机很快发展成计算机联网,实现了计算机之间的数据通信、数据共享。通信介质从普通导线、同轴电缆发展到双绞线、光纤导线、光缆;电子计算机的输入输出设备也飞速发展起来,扫描仪、绘图仪、音频视频设备等,使计算机如虎添翼,可以处理更多的复杂问题。20世纪80年代末多媒体技术的兴起,使计算机具备了综合处理文字、声音、图像、影视等各种形式信息的能力,日益成为信息处理最重要和必不可少的工具。人类也由工业社会转入信息社会,各国也在信息技术研究方面投入大量资金,构建“信息高速公路”社会。
2 信息技术发展趋势2.1信息技术分类1)、按表现形态的不同,信息技术可分为硬技术(物化技术)与软技术(非物化技术)。前者指各种信息设备及其功能,如显微镜、电话机、通信卫星、多媒体电脑。后者指有关信息获取与处理的各种知识、方法与技能,如语言文字技术、数据统计分析技术、规划决策技术、计算机软件技术等。
信息技术
2)、按工作流程中基本环节的不同,信息技术可分为信息获取技术、信息传递技术、信息存储技术、信息加工技术及信息标准化技术。信息获取技术包括信息的搜索、感知、接收、过滤等。如显微镜、望远镜、气象卫星、温度计、钟表、Internet搜索器中的技术等。信息传递技术指跨越空间共享信息的技术,又可分为不同类型。如单向传递与双向传递技术,单通道传递、多通道传递与广播传递技术。信息存储技术指跨越时间保存信息的技术,如印刷术、照相术、录音术、录像术、缩微术、磁盘术、光盘术等。信息加工技术是对信息进行描述、分类、排序、转换、浓缩、扩充、创新等的技术。信息加工技术的发展已有两次突破:从人脑信息加工到使用机械设备(如算盘,标尺等)进行信息加工,再发展为使用电子计算机与网络进行信息加工。信息标准化技术是指使信息的获取、传递、存储,加工各环节有机衔接,与提高信息交换共享能力的技术。如信息管理标准、字符编码标准、语言文字的规范化等。
3)、日常用法中,有人按使用的信息设备不同,把信息技术分为电话技术、电报技术、广播技术、电视技术、复印技术、缩微技术、卫星技术、计算机技术、网络技术等。也有人从信息的传播模式分,将信息技术分为传者信息处理技术、信息通道技术、受者信息处理技术、信息抗干扰技术等。
4)、按技术的功能层次不同,可将信息技术体系分为基础层次的信息技术(如新材料技术、新能源技术),支撑层次的信息技术(如机械技术、电子技术、激光技术、生物技术、空间技术等),主体层次的信息技术(如感测技术、通信技术、计算机技术、控制技术),应用层次的信息技术(如文化教育、商业贸易、工农业生产、社会管理中用以提高效率和效益的各种自动化、智能化、信息化应用软件与设备)。
2.2信息技术的发展动态1)、微电子向着高效能方向发展
当代的计算机都是建立在微电子学基础上的。过去在微电子学方面有一个摩尔定律:即芯片集成晶体管数量每18个月左右增加一倍。据最新研究,其已被突破,达到每12个月增加一倍。20世纪50年代,面积为0.1平方英寸的硅片上只能装上1个电子元件,现在则高达3万多个。
现在人们普遍认为微电子技术即将进入“后光刻时代”,未来随着纳米科技的发展可能将使计算机建立在更微观集成、更高速的基础之上,引起筛子领域的一次新的革命。其结果是:(1)效率更高。纳米技术能制造更节能、更便宜的微处理器,使计算机效率提高百万倍,可生产出更高效率的宽带网,海量存贮器,集传感、数据处理、通讯为一体的智能器件。(2)体积更小。纳米计算机可缩小到头发丝直径的千分之一。美国已利用纳米技术制造出了跳蚤大小的机器人,该项技术使用了微电脑,机器人具有初级逻辑思维能力。此外,该机器人还能在绝对危险或人类所不能及的环境条件下进行工作,用它可以完成核反应堆内的故障处理,此项技术也可用于原子的运送及原子的重新排列。(3)功能更奇。可把装有飞机驾驶程序的纳米芯片植入人体体内,通过细胞接受信息,不用培训你就能驾驶飞机。
预计本世纪应用电子自旋、核自旋、光子技术和生物芯片的功能强大的计算机将要问世,可以模拟人的大脑,用于传感认识和思维加工。预计在未来十多年内可以产生存贮量达到每立方毫米100万G,而功耗仅仅为超大规模集成电路千万分之一的生物芯片。
总之,可以预见,微电子与电子器件及集成结构功能将向着高集成度、高速度、低功耗、低成本方向发展。
2)、计算机向着多极化方向发展
21世纪,计算机向着超高速度、小型化、并行处理(同时处理)、智能化方向发展。它的发展轨迹不同于自然界的“大鱼吃小鱼”,而是“快鱼吃慢鱼”,谁占领了市场先机谁就成为主导产品。
目前在计算机领域有一个10倍速定律:即每5~7年速度增加10倍,体积减少10倍,价格下降10倍,这一定律也即将被突破。
在超高速方面,IBM的高性能计算机峰值已达到每秒300万亿次以上。美国计划在2010年前研制出千万亿次计算机。从量子理论推出来的极限计算机,其速度将达1051次/秒,且内存可达1031比特。
在小型化方面,日本在利用集成电路方面,将一家电视台(包括设备和信息采集存贮)压缩到纽扣小的芯片上,取得了初步成功。他们准备将其再压缩到药片大小,甚至设想将检查设备通过药片置入病人体内,以直接观察病人的病情。
在智能化方面,冰箱电脑里事先存储了你的饮食习惯,零食、油米酱醋等吃完了,它会自动连接互联网,替你向超市订购;微波炉可以自动下载食谱,只要你事先把买回的鸡鸭鱼肉放进去,它便会在你预定的时间自动进行解冻,并做成香喷喷的美味佳肴。
这些预测,实际为人们展现了信息技术无限广阔的发展前景,也说明信息技术离“成熟”还有很大的发展空间。
3)、网络向着高级化方向发展
计算机技术属信息处理技术,通信技术属信息传输技术,在它们各自独立发展阶段,信息技术很难有大的突破。20世纪60年代以后,在计算机技术日臻完善、通信技术普遍数字化后,这两大信息技术在兼容与共存的基础上有机结合在一起,使信息技术进入了信息传输、处理、储存一体化的新时代,一方面实现了现代通信系统在计算机的控制下传播的自动化和高效化,各种通信方式一体化;另一方面,使计算机借助通信线路实现了网络化。总趋势是数据、话音和图像三种技术的融合。
计算机联网后其发展趋势表现为:
1.普及无线联网
通信技术与网络技术相互融合,进一步发展为以无线保真技术为基础的无线联网。它可以通过便携式电脑或其他运算器件随时随地高速联网,而无需电缆。无线保真技术将使个人拥有网络通信能力,这是一次深刻的社会进步。
2.能量无限扩充
网络的出现,使信息资源真正成为了继物质、能源之后的第三大重要资源。计算机联网,特别是1994年因特网商业化以来,因特网带来的网络革命的冲击使世人震惊。用美国人的话来形容:变革之大犹如10次工业革命和基督教改革加在一起发生在一代人之内。因特网造就的电子空间正成为世界各国继陆地、海洋、天空之后争先抢占的“新边疆”,因为,谁在电子空间占有优势,谁就会在网络经济的发展中获得丰硕经济利益,美国近年来经济的发展就是一个实例。的确,网络技术的应用,使计算机的能量实现了无限扩充,信息资源得到了最充分的利用。因为,一个设计优良的网络能够把联机的累积力量植入每个单机;一部微机所联系的网络越大,它的用处越多,力量也越强;上网工作时,不是在使用个人的计算机,而是在使用一台能量无限扩充的庞大计算机。不仅如此,未来的网络发展是要将分布在地球各个角落宽带多媒体业务无缝地连接起来,用户可以在任何一个地方用任何一种接入方式,访问全球任何一个数据库和网络。同时可以和任何用户保持任何方式的通信交流。另外,网络将超越地球引入太阳系甚至更远的空间。
3.功能逐步完善
传统网络由于技术和基础设施的局限,在网络安全、规模、性能、提供的业务能力方面都存在缺陷,未来的网络必将朝着更大、更快、更及时、更安全、更方便的方向发展。
由中国自主研发的下一代互联网主干网核心技术2006年9月正式通过国家验收,这一成果确定了中国在世界下一代互联网中的领先地位,也标志着中国在世界下一代互联网研究与建设上占据了一席之地。下一代互联网主干网在核心技术上实现了四大突破,其中三项属于国际首创,这不仅确立了中国在下一代互联网领域的领先定位,有了话语权,更重要的是,彻底摆脱了对国外互联网关键技术及产品的依赖,在确保国家信息安全的同时,对中国互联网产业将产生重要影响。
下一代互联网与现代互联网的区别:更快;更大;更安全;更及时;更方便。
更快——下一代互联网将比现在的网络传输速度提高1000-10000倍。
更大——目前,网络最大的问题就是网络地址资源有限,在目前的IPV4协议下,现有地址中的70%已分配光,明显制约着互联网的发展。从理论上讲,现在使用的IP地址有43亿个,其中北美占有3/4,约30亿个,而人口最多的亚洲只有不到4亿个,中国只有3000万多一点,由于IP地址不足,许多国家只有采用地址共享、拔号上网的方式利用互联网,严重制约了这些国家互联网的应用和发展。与现在的网络相比,下一代互联网将逐渐放弃IPV4,启用IPV6地址协议,下一代网络的最大优势就是网络地址近乎无限,每人可以拥有1600万个IP地址,几乎可以给你家庭中的每一个可能的东西分配一个自己的IP地址,每个用户的汽车、洗衣机、电话、冰箱等IP地址,在全球互联网上都是唯一的,让数字化生活变成现实。
更安全——目前的计算机网络因为种种原因,存在大量安全隐患,下一代互联网将在建设之初就充分考虑安全问题,可以有效控制、解决网络安全问题。
现代通信技术向着网络化,数字化,宽带化方向发展
4)、现代通信技术向着网络化,数字化,宽带化方向发展
随着数字化技术的发展,音视频和多媒体技术突飞猛进音视频技术是当前最活跃,发展最迅速的高新技术领域。近年来,虽然模拟音频产品在市场上仍占主流,但数字化潮流正在迅猛冲击和变昔模拟领域,数字技术促进了音视频、通信和计算机技术的融合,出现了业务上相互渗透、汇合,在音频产品和技术方面,音频广播仍以模拟技术为主,但各国正在积极开展数字音频广播的研究和实施。组合音响也在向小型和微型的数字化和组合、多声道环绕声方向发展。视频产品和技术方面,家用电视机有逐渐朝向大屏幕发展的趋势。人们正迎来数字电视时代。对于电缆电视而言,有两个重要的发展趋势,即网络化和数字化,总的趋势是向综合信息业务网方向发展。
通信传输在向高速大容量长距离发展,光纤传输速率越来越高,波长从1.3μm发展到1.55μm并已大量采用。一个波长段上用多个信道的波分复用技术已进入实用阶段;光放大器代替光电转换中继器已经实用;相干光通信,光弧子通信已取得重大进展。这将使无中继距离延长到几百甚至几千公里。随着光纤技术的逐渐成熟,光纤技术在通信中的广泛应用,通信技术的带宽正在一点一点的变大,我们可以大胆的预计本世纪通信技术将向带宽化迈进。术上相互吸收、移植的现象,发展了一大批集合性产品和业务,即所谓的"家电产品信息化"。
5)、信息技术将会促使遥感技术的蓬勃发展
感测与识别技术它的作用是扩展人获取信息的感觉器官功能。它包括信息识别、信息提取、信息检测等技术。这类技术的总称是“传感技术”,它几乎可以扩展人类所有感觉器官的传感功能。传感技术、测量技术与通信技术相结合而产生的遥感技术,更使人感知信息的能力得到进一步的加强。随着信息技术的迅速发展,通信技术和传感技术的紧密集合,我们可以预知:遥感技术将会在农田水利、地质勘探、气象预报、海洋开发、环境监测、地图测绘、土地利用调查、灾害性天气预报、森林防火,尤其在地质找矿、森林和土地利用调查、气象预报、地下水和地热调查、地震研究、水利建设、铁路选线、工程地质及城市规划与建设等方面发挥更大的作用。
2.3信息技术发展趋势分析从以上各个方面综合来看,信息技术有一些共同的发展趋势:
(1)高速大容量。速度和容量是紧密联系的,随着要传递和处理的信息量越来越大,高速大容量是必然趋势。因此从器件到系统,从处理、存储到传递,从传输到交换无不向高速大容量的要求发展。
(2)综合集成。社会对信息的多方面需求,要求信息业提供更丰富的产品和服务。因此采集、处理、存储与传递的结合,信息生产与信息使用的结合,各种媒体的结合,各种业务的综合都体现了综合集成的要求。
(3)网络化。通信本身就是网络,其广度和深度在不断发展,计算机也越来越网络化。各个使用终端或使用者都被组织到统一的网络中,国际电联的口号“一个世界,一个网络”。虽然绝对了一些,但其方向是正确的。
(4)数字化。一是便于大规模生产。过去生产一台模拟设备需要花很多时间,模拟电路每一个单独部分都需要进行单独设计单独调测。而数字设备是单元式的,设计非常简单,便于大规模生产,可大大降低成本。二是有利于综合。每一个模拟电路其电路物理特性区别都非常大,而数字电路由二进制电路组成,非常便于综合,要达到一个复杂的性能用模拟方式往往综合不起来。现在数字化发展非常迅速,各种说法也很多,如数字化世界、数字化地球等。而搞数字化最主要的优点就是便于大规模生产和便于综合这两大方面。
总之,人类将全面进入信息时代。信息产业无疑将成为未来全球经济中最宏大、最具活力的产业。信息将成为知识经济社会中最重要的资源和竞争要素,信息技术也会成为各国研究和发展的重要对象。
2.4信息技术发展新亮点1)、物联网
物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“TheInternetofthings”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。
业内专家认为,物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。目前,美国、欧盟等都在投入巨资深入研究探索物联网。我国也正在高度关注、重视物联网的研究,工业和信息化部会同有关部门,在新一代信息技术方面正在开展研究,以形成支持新一代信息技术发展的政策措施。
中国移动总裁王建宙提及,物联网将会成为中国移动未来的发展重点。他表示将会邀请台湾生产RFID、传感器和条形码的厂商和中国移动合作。运用物联网技术,上海移动已为多个行业客户度身打造了集数据采集、传输、处理和业务管理于一体的整套无线综合应用解决方案。最新数据显示,上海移动目前已将超过10万个芯片装载在出租车、公交车上,形式多样的物联网应用在各行各业大显神通,确保城市的有序运作。在上海世博会期间,“车务通”全面运用于上海公共交通系统,以最先进的技术保障世博园区周边大流量交通的顺畅;面向物流企业运输管理的“e物流”,将为用户提供实时准确的货况信息、车辆跟踪定位、运输路径选择、物流网络设计与优化等服务,大大提升物流企业综合竞争能力。
此外,在“物联网”普及以后,用于动物、植物和机器、物品的传感器与电子标签及配套的接口装置的数量将大大超过手机的数量。物联网的推广将会成为推进经济发展的又一个驱动器,为产业开拓了又一个潜力无穷的发展机会。按照目前对物联网的需求,在近年内就需要按亿计的传感器和电子标签,这将大大推进信息技术元件的生产,同时增加大量的就业机会。
2)、媒介融合
网络、手机等新媒体的日益发达,对我们的传播环境产生了很大的冲击。当前iPhone、iPad等新的媒体平台成为公众关注的焦点。随着技术的发展,越来越多的媒体平台将在我们的生活中扮演重要的角色。这些智能化的多样化的媒体终端给受众带来了前所未有的视听冲击。“媒介融合”这一全新的词汇,越来越多地被学界和业界提起,它将是未来媒体发展的一个必然趋向。但目前而言,它还没有一个统一的定义。比较有代表性的观点是美国新闻学会媒介研究中心主任Andrew·Nachison关于媒介融合的定义:媒介融合是“印刷的、音频的、视频的、互动性数字媒体组织间的战略的、操作的、文化的联盟”。当前的融合媒介是以数字化网络为基础,融合新的传播功能的综合载体,例如媒介内容的融合、传播渠道的融合、接收终端的融合等,随着技术的不断进步,媒介融合的界定指标也会发生变化,最终将实现统一形态的媒体平台。从它的发展态势看,这种融合不仅包括媒介融合,而且包括媒体与受众的融合,这两者是深层交织的,未来会更加融合。从传播形式上看,媒介融合方向下的人际传播、组织传播和大众传播将趋于一体,成为一个综合意义的传播模式,作为传统媒体的普通受众,将在媒介融合的浪潮下变成一个个移动的媒体平台和信息互动终端。
那么我们可以想象未来媒介融合的时代,先进的媒体终端在持有人的手中变得灵活丰富,每个人本身就是一个媒体平台,不仅接收着四面八方的信息,而且即时方便地传播着自己的见闻、思想、情感。随着传播技术的演进,媒体平台必将朝着移动化的方向发展,我们人在哪里,哪里就是一个媒体平台,这样每个人都是一个全新的媒体,不仅是新技术的推动者,更是被新技术深深地影响着。正如麦克卢汉早年的观点:“我们自身变成我们观察的东西……我们塑造了工具,此后工具又塑造了我们。”
3)、云计算
云计算(CloudComputing)是网格计算、分布式计算、并行计算、效用计算、网络存储、虚拟化、负载均衡等传统计算机技术和网络技术发展融合的产物。它旨在通过网络把多个成本相对较低的计算实体整合成一个具有强大计算能力的完美系统,并借助SaaS、PaaS、IaaS、MSP等先进的商业模式把这强大的计算能力分布到终端用户手中。
云计算之所以是一种划时代的技术,就是因为它将数量庞大的廉价计算机放进资源池中,用软件容错来降低硬件成本,通过将云计算设施部署在寒冷和电力资源丰富的地区来节省电力成本,通过规模化的共享使用来提高资源利用率。国外代表性云计算平台提供商达到了惊人的10-40倍的性能价格比提升。国内由于技术、规模和统一电价等问题,暂时难以达到同等的性能价格比,我们暂时将这个指标定为5倍。拥有256个节点的中国移动研究院的云计算平台已经达到了5到7倍的性能价格比提升,其性能价格比随着规模和利用率的提升还有提升空间。
围绕因特网搜索创建了一种超动力商业模式。如今,他们又以应用托管、企业搜索以及其他更多形式向企业开放了他们的“云”。2010年4月,谷歌推出了谷歌应用软件引擎(GoogleAppEngine,GAE),这种服务让开发人员可以编译基于Python的应用程序,并可免费使用谷歌的基础设施来进行托管(最高存储空间达500MB)。对于超过此上限的存储空间,谷歌按“每CPU内核每小时”10至12美分及1GB空间15至18美分的标准进行收费。最近,谷歌还公布了提供可由企业自定义的托管企业搜索服务计划。
3 总结随着信息化在全球的快速进展,世界对信息的需求快速增长,信息产品和信息服务对于各个国家、地区、企业、单位、家庭、个人都不可缺少。信息技术在全球的广泛使用,不仅深刻地影响着经济结构与经济效率,而且作为先进生产力的代表,信息技术已成为支撑当今经济活动和社会生活的基石。在这种情况下,信息产业成为世界各国,特别是发达国家竞相投资、重点发展的战略性产业部门。
无论未来出现什么样的信息平台和终端,它们都将更加方便、人性化、智能化,与人的关系也将更加密切。除了媒介融合与实现物联网的必然趋向外,在信息技术发展的带动下,信息产业将成为带动经济增长的引擎。各国都将加快研究信息技术的步伐,人类将会进入“信息高速公路”的信息时代。人们的工作和生活也将因信息技术的发展,而变地更加便捷、舒适、高效。相信未来信息技术的发展必定会给我们带来意想不到的惊喜,让我们翘首以待。
4参考文献[1]物联网http://baike.baidu.com/view/1136308.htm#2
[2]云计算http://baike.baidu.com/view/1316082.htm
[3]鲍立泉.《数字传播技术发展与媒介融合演进》.华中科技大学博士学位论文.2010年5月28日
[4]郎保才,崔继友,鲁磊.《未来信息技术的发展趋势》.2009年3月
[5]信息技术http://baike.baidu.com/view/3226.htm
OCR( 光学字符识别)技术简介及发展
OCR车牌识别
可以说目前印刷体OCR的识别技术已经达到较高水平。OCR产品已由早期的只能识别指定的印刷体数字、英文字母和部分符号,发展成为可以自动进行版面分析、表格识别,实现混合文字、多字体、多字号、横竖混排识别的强大的计算机信息快速录入工具。对印刷体汉字的识别率达到98%以上,即使对印刷质量较差的文字其识别率也达到95%以上。可识别宋体、黑体、楷体、仿宋体等多种字体的简、繁体,并且可以对多种字体、不同字号混合排版进行识别,对手写体汉字的识别率达到70%以上。特别是我国的汉字OCR技术经过十几年的努力,克服了起步晚、汉字字符集异常庞大等困难,单字的识别速度(指在单位时间内所完成的从特征提取到识别结果输出的字数)可以达到70字/秒以上。由于印刷体OCR汉字识别技术已经比较成熟,所以OCR产品被广泛地应用在新闻、印刷、出版、图书馆、办公自动化等各个行业。
OCR银行卡识别
专业型OCR产品多是面向特定的行业,即适用于每天需处理大量表格信息录入的部门,如邮政、税务、海关、统计等等。这种面向特定行业的专业型OCR系统,格式较为固定,识别的字符集相对较小,经常与专用的输入设备结合使用,因此具有速度快、效率高等特点,比如邮件自动分拣系统等。
OCR车架号VIN码识别
手写文稿的识别直到1996、1997年才开始有产品问世,而且是作为印刷文稿识别产品的一项附加功能提供的。由于人写字的习惯千差万别,实现自由手写体识别相当困难,所以手写体OCR技术的使用领域是联机手写体识别,即人一边写,计算机一边识别,是一种实时识别方式。
二、OCR的基本原理
简单地说,OCR的基本原理就是通过扫描仪将一份文稿的图像输入给计算机,然后由计算机取出每个文字的图像,并将其转换成汉字的编码。其具体工作过程是,扫描仪将汉字文稿通过电荷耦合器件CCD将文稿的光信号转换为电信号,经过模拟/数字转换器转化为数字信号传输给计算机。计算机接受的是文稿的数字图像,其图像上的汉字可能是印刷汉字,也可能是手写汉字,然后对这些图像中的汉字进行识别。对于印刷体字符,首先采用光学的方式将文档资料转换成原始黑白点阵的图像文件,再通过识别软件将图像中的文字转换成文本格式,以便文字处理软件的进一步加工。其中文字识别是OCR的重要技术。
1.OCR识别的两种方式
与其它信息数据一样,在计算机中所有扫描仪捕捉到的图文信息都是用0、1这两个数字来记录和进行识别的,所有信息都只是以0、1保存的一串串点或样本点。OCR识别程序识别页面上的字符信息,主要通过单元模式匹配法和特征提取法两种方式进行字符识别。
单元模式匹配识别法(PatternMatching)是将每一个字符与保存有标准字体和字号位图的文件进行不严格的比较。如果应用程序中有一个已保存字符的大数据库,则应用程序会选取合适的字符进行正确的匹配。软件必须使用一些处理技术,找出最相似的匹配,通常是不断试验同一个字符的不同版本来比较。有些软件可以扫描一页文本,并鉴别出定义新字体的每一个字符。有些软件则使用自己的识别技术,尽其所能鉴别页面上的字符,然后将不可识别的字符进行人工选择或直接录入。
特征提取识别法(FeatureExtraction)是将每个字符分解为很多个不同的字符特征,包括斜线、水平线和曲线等。然后,又将这些特征与理解(识别)的字符进行匹配。举个简单的例子,应用程序识别到两条水平横线,它就会“认为”该字符可能是“二”。特征提取法的优点是可以识别多种字体,例如中文书法体就是采用特征提取法实现字符识别的。
多数OCR应用软件都加入了语法智能检查功能,这种功能进一步提高了识别率。它主要通过上下文检查法实现拼写和语法的纠正,在文字识别时,OCR应用程序会做多次的上下文衔接性检查,根据程序中已经存在的词组、固定的用词顺序,对应的检查字符串的用词字。比较高级的应用软件会自动用它“认为”正确的词语替换错误词语,纠正语句意思。
2.文字识别的几个步骤
文字识别包括以下几个步骤:图文输入、预处理、单字识别和后处理等。
(1)图文输入
是指通过输入设备将文档输入到计算机中,也就是实现原稿的数字化。现在用得比较普遍的设备是扫描仪。文档图像的扫描质量是OCR软件正确识别的前提条件。恰当地选择扫描分辨率及相关参数,是保证文字清楚、特征不丢失的关键。此外,文档尽可能地放置端正,以保证预处理检测的倾斜角小,在进行倾斜校正后,文字图像的变形就小。这些简单的操作,会使系统的识别正确率有所提高。反之,由于扫描设置不当,文字的断笔过多可能会分检出半个文字的图像。文字断笔和笔画粘连会造成有些特征丢失,在将其特征与特征库比较时,会使其特征距离加大,识别错误率上升。
(2)预处理
扫描一幅简单的印刷文档的图像,将每一个文字图像分检出来交给识别模块识别,这一过程称为图像预处理。预处理是指在进行文字识别之前的一些准备工作,包括图像净化处理,去掉原始图像中的显见噪声(干扰)。主要任务是测量文档放置的倾斜角,对文档进行版面分析,对选出的文字域进行排版确认,对横、竖排版的文字行进行切分,每一行的文字图像的分离,标点符号的判别等。这一阶段的工作非常重要,处理的效果直接影响到文字识别的准确率。
版面分析是对文本图像的总体分析,是将文档中的所有文字块分检出来,区分出文本段落及排版顺序,以及图像、表格的区域。将各文字块的域界(域在图像中的始点、终点坐标),域内的属性(横、竖排版方式)以及各文字块的连接关系作为一种数据结构,提供给识别模块自动识别。对于文本区域直接进行识别处理,对于表格区域进行专用的表格分析及识别处理,对于图像区域进行压缩或简单存储。行字切分是将大幅的图像先切割为行,再从图像行中分离出单个字符的过程。
(3)单字识别
单字识别是体现OCR文字识别的核心技术。从扫描文本中分检出的文字图像,由计算机将其图形、图像转变成文字的标准代码,是让计算机“认字”的关键,也就是所谓的识别技术。就像人脑认识文字是因为在人脑中已经保存了文字的各种特征,如文字的结构、文字的笔画等。要想让计算机来识别文字,也需要先将文字的特征等信息储存到计算机里,但要储存什么样的信息及怎样来获取这些信息是一个很复杂的过程,而且要达到非常高的识别率才能符合要求。通常采用的做法是根据文字的笔画、特征点、投影信息、点的区域分布等进行分析。
中国汉字常用的就有几千,识别技术就是特征比较技术,通过和识别特征库的比较,找到特征最相似的字,提取该文字的标准代码,即为识别结果。比较是人们认识事物的一种基本方法,汉字识别也是通过比较找出汉字之间的相同、相似、相异,把握其量和质的关系,以及时间与空间的关系等。对于大字符集的汉字一般采用多级分类,多特征、全方位动态匹配求相似集,以保证分类率高、适应性强、稳定性好;细分类重点在于对相似集求异匹配、加权处理、结构判别,定量、定性分析,以及前后联接词的关系,最后进行判别。汉字识别实质上是比较科学或认知科学在人工智能方面的应用,其关键技术是识别特征库。计算机有了这样的一个特征库,才能完成认字的功能。
在图像文档的版面中,除了有文字、图片,有时还会有表格存在,为了使识别后的表格数字化,需要在版面分析过程中,对表格域进行特殊的处理,它包括对表格线的结构信息的提取,对表格内文字域的分检,完成对表格线和对文字域的识别,并根据表格线的数字化生成不同的文件格式。由于文档中的表格随意性大,格式多样,有封闭式的,也有开放式的,特别是表格中的斜线,给表格分析造成一定的困难。
(4)后处理
后处理是指对识别出的文字或多个识别结果采用词组方式进行上下匹配,即将单字识别的结果进行分词,与词库中的词组进行比较,以提高系统的识别率,减少误识率。
汉字字符识别是文字识别领域最为困难的问题,它涉及模式识别、图像处理、数字信号处理、自然语言理解、人工智能、模糊数学、信息论、计算机、中文信息处理等学科,是一门综合性技术。近几年来,印刷汉字识别系统的单字识别正确率已经超过95%,为了进一步提高系统的总体识别率,扫描图像、图像的预处理以及识别后处理等方面的技术也都得到了深入的研究,并取得了长足的进展,有效地提高了印刷汉字识别系统的总体性能。清华大学在此方面的研究成果突出,已经成为世界上的最具权威的机构之一。目前,清华紫光的全系列扫描仪中都配装了清华OCR千禧版软件,它在识别率、表格识别甚至规范手写体的识别方面,均达到了较高水平。
三、OCR文字识别技巧
在最近几年中,OCR识别技术随着扫描仪的普及得到了飞速的发展,扫描、识别软件的性能不断强大并向智能化不断升级发展。但是要想快速地获取正确的扫描结果,得到高效率的文字录入,必须认真学习有关知识,结合实践经验,摸索出自己的全套解决方案。有时我们在作文字识别工作时识别率非常低,根本达不到软件所说的95%以上,请先不要责怪硬件或软件,其实这是没有掌握好扫描及OCR识别技巧的原因。
下面是文字识别操作中经常用到了一些方法和技巧。
1.分辨率的设置是文字识别的重要前提。一般来讲,扫描仪提供较多的图像信息,识别软件比较容易得出识别结果。但也不是扫描分辨率设得越高识别正确率就越高。选择300dpi或400dpi分辨率,适合大部分文档扫描。注意文字原稿的扫描识别,设置扫描分辨率时千万不要超过扫描仪的光学分辨率,不然会得不偿失。下面是部分典型设置,仅供参考。
(1)1、2、3号字的文章段,推荐使用200dpi。
(2)4、小4、5号字的文章段,推荐使用300dpl
(3)小5、6号字的文章段,推荐使用400dpl
(4)7、8号字的文章段,推荐使用600dpi。
2.扫描时适当地调整好亮度和对比度值,使扫描文件黑白分明。这对识别率的影响最为关键,扫描亮度和对比度值的设定以观察扫描后的图像中汉字的笔画较细但又不断开为原则。进行识别前,先看看扫描得到的图像中文字质量如何,如果图像存在黑点或黑斑时或文字线条很粗很黑,分不清笔画时,说明亮度值太小了,应该增加亮度值在试试;如果文字线条凹凸不平,有断线甚至图像中汉字轮廓严重残缺时,说明亮度值太大了,应减小亮度后再试试。
3.选好扫描软件。选一款好的适合自己的OCR软件是作好文字识别工作的基础,一般不要使用扫描仪自带的OEM软件,OEM的OCR软件的功能少、效果差,有的甚至没有中文识别,经过比较,我认为清华紫光OCR2003专业版和尚书OCR6.0文本自动识别输入系统的识别能力与使用功能更突出一些。再选一个图像软件,OCR软件不是有扫描接口吗?为什么还找图像软件?第一,OCR软件不能识别所有的扫描仪;第二,也是最关键的,利用图像软件的扫描接口扫描出来的图像便于处理;一般选用PHOTOSHOP。
4.如果要进行的文本是带有格式的,如粗体、斜体、首行缩进等,部分OCR软件识别不出来,会丢失格式或出现乱码。如果必须扫描带有格式的文本,事先要确保使用的识别软件是否支持文字格式的扫描。也可以关闭样式识别系统,使软件集中注意力查找正确的字符,不再顾及字体和字体格式
四、市场成熟的OCR产品
目前市场上较为成熟的OCR产品有:证件识别SDK、车牌识别SDK、文档识别SDK、银行卡识别SDK、表格识别SDK、票据识别SDK、名片识别SDK、护照识别SDK、身份证识别SDK。其算法主要有开源的和工业运用的。
运营人员谢常胜微信[13829771132]转载前须联系本人返回搜狐,查看更多
图像识别技术的应用及发展趋势
点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达本文转自|新机器视觉图像识别技术的背景
移动互联网、智能手机以及社交网络的发展带来了海量图片信息,根据BI五月份的文章,Instagram每天图片上传量约为6000万张;今年2月份WhatsApp每天的图片发送量为5亿张;国内的微信朋友圈也是以图片分享为驱动。不受地域和语言限制的图片逐渐取代了繁琐而微妙的文字,成为了传词达意的主要媒介。图片成为互联网信息交流主要媒介的原因主要在于两点:
第一,从用户读取信息的习惯来看,相比于文字,图片能够为用户提供更加生动、容易理解、有趣及更具艺术感的信息;
第二,从图片来源来看,智能手机为我们带来方便的拍摄和截屏手段,帮助我们更快的用图片来采集和记录信息。
但伴随着图片成为互联网中的主要信息载体,难题随之出现。当信息由文字记载时,我们可以通过关键词搜索轻易找到所需内容并进行任意编辑,而当信息是由图片记载时,我们却无法对图片中的内容进行检索,从而影响了我们从图片中找到关键内容的效率。图片给我们带来了快捷的信息记录和分享方式,却降低了我们的信息检索效率。在这个环境下,计算机的图像识别技术就显得尤为重要。
图像识别是计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。识别过程包括图像预处理、图像分割、特征提取和判断匹配。简单来说,图像识别就是计算机如何像人一样读懂图片的内容。借助图像识别技术,我们不仅可以通过图片搜索更快的获取信息,还可以产生一种新的与外部世界交互的方式,甚至会让外部世界更加智能的运行。百度李彦宏在2011年提到“全新的读图时代已经来临”,现在随着图形识别技术的不断进步,越来越多的科技公司开始涉及图形识别领域,这标志着读图时代正式到来,并且将引领我们进入更加智能的未来。
图像识别的初级阶段——娱乐化、工具化
在这个阶段,用户主要是借助图像识别技术来满足某些娱乐化需求。例如,百度魔图的“大咖配”功能可以帮助用户找到与其长相最匹配的明星,百度的图片搜索可以找到相似的图片;Facebook研发了根据相片进行人脸匹配的DeepFace;雅虎收购的图像识别公司IQEngine开发的Glow可以通过图像识别自动生成照片的标签以帮助用户管理手机上的照片;国内专注于图像识别的创业公司旷视科技成立了VisionHacker游戏工作室,借助图形识别技术研发移动端的体感游戏;创视新科技通过图像识别技术研发机器视觉表面检测系统。
这个阶段还有一个非常重要的细分领域——OCR(OpticalCharacterRecognition,光学字符识别),是指光学设备检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程,就是计算机对文字的阅读。语言和文字是我们获取信息最基本、最重要的途径。在比特世界,我们可以借助互联网和计算机轻松的获取和处理文字。但一旦文字以图片的形式表现出来,就对我们获取和处理文字平添了很多麻烦。这一方面表现为数字世界中由于特定原因被存储称图片格式的文字;另一方面是我们在现实生活中看到的所有物理形态的文字。所以我们需要借助OCR技术将这些文字和信息提取出来。在这方面,国内产品包括百度的涂书笔记和百度翻译等;而谷歌借助经过DistBelief训练的大型分布式神经网络,对于Google街景图库的上千万门牌号的识别率超过90%,每天可识别百万门牌号。
在这个阶段,图像识别技术仅作为我们的辅助工具存在,为我们自身的人类视觉提供了强有力的辅助和增强,带给了我们一种全新的与外部世界进行交互的方式。我们可以通过搜索找到图片中的关键信息;可以随手拍下一件陌生物体而迅速找到与之相关的各类信息;可以将潜在搭讪对象拍下提前去她的社交网络了解一番;也可以将人脸识别作为主要的身份认证方式……这些应用虽然看起来很普通,但当图像识别技术渗透到我们行为习惯的方方面面时,我们就相当于把一部分视力外包给了机器,就像我们已经把部分记忆外包给了搜索引擎一样。
这将极大改善我们与外部世界的交互方式,此前我们利用科技工具探寻外部世界的流程是这样:人眼捕捉目标信息、大脑将信息进行分析、转化成机器可以理解的关键词、与机器交互获得结果。而当图像识别技术赋予了机器“眼睛”之后,这个过程就可以简化为:人眼借助机器捕捉目标信息、机器和互联网直接对信息进行分析并返回结果。图像识别使摄像头成为解密信息的钥匙,我们仅需把摄像头对准某一未知事物,就能得到预想的答案。就像百度科学家余凯所说,摄像头成为连接人和世界信息的重要入口之一。
图像识别的高级阶段——拥有视觉的机器
上文提到,目前的图像识别技术是作为一个工具来帮助我们与外部世界进行交互,只为我们自身的视觉提供了一个辅助作用,所有的行动还需我们自己完成。而当机器真正具有了视觉之后,它们完全有可能代替我们去完成这些行动。目前的图像识别应用就像是盲人的导盲犬,在盲人行动时为其指引方向;而未来的图像识别技术将会同其他人工智能技术融合在一起成为盲人的全职管家,不需要盲人进行任何行动,而是由这个管家帮助其完成所有事情。举个例子,如果图像识别是一个工具,就如同我们在驾驶汽车时佩戴谷歌眼镜,它将外部信息进行分析后传递给我们,我们再依据这些信息做出行驶决策;而如果将图像识别利用在机器视觉和人工智能上,这就如同谷歌的无人驾驶汽车,机器不仅可以对外部信息进行获取和分析,还全权负责所有的行驶活动,让我们得到完全解放。
《人工智能:一种现代方法》中提到,在人工智能中,感知是通过解释传感器的响应而为机器提供它们所处的世界的信息,其中它们与人类共有的感知形态包括视觉、听觉和触觉,而视觉最为重要,因为视觉是一切行动的基础。在一次论坛上百度IDL的余凯院长问大家,你觉得哪种感觉最重要?没有人能很快作答,后来余凯院长换了个提问方式,如果要放弃一种感觉,你最不愿意放弃的是那一种?这时大家都回答是视觉。ChrisFrith在《心智的构建》中提到,我们对世界的感知不是直接的,而是依赖于“无意识推理”,也就是说在我们能感知物体之前,大脑必须依据到达感官的信息来推断这个物体可能是什么,这构成了人类最重要的预判和处理突发时间的能力。而视觉是这个过程中最及时和准确的信息获取渠道,人类感觉信息中的80%都是视觉信息。机器视觉之于人工智能的意义就是视觉之于人类的意义,而决定着机器视觉的就是图像识别技术。
更重要的是,在某些应用场景,机器视觉比人类的生理视觉更具优势,它更加准确、客观和稳定。人类视觉有着天然的局限,我们看起来能立刻且毫无费力的感知世界,而且似乎也能详细生动的感知整个视觉场景,但这只是一个错觉,只有投射到眼球中心的视觉场景的中间部分,我们才能详细而色彩鲜明的看清楚。偏离中间大约10度的位置,神经细胞更加分散并且智能探知光和阴影。也就是说,在我们视觉世界的边缘是无色、模糊的。因此,我们才会存在“变化盲视”,才会在经历着多样事物发生时,仅仅关注其中一样,而忽视了其他样事物的发生,而且不知道它们的发生。而机器在这方面就有着更多的优势,它们能够发现和记录视力所及范围内发生的所有事情。拿应用最广的视频监控来说,传统监控需要有人在电视墙前时刻保持高度警惕,然后再通过自己对视频的判断来得出结论,但这往往会因为人的疲劳、视觉局限和注意力分散等原因影响监控效果。但有了成熟的图像识别技术之后,再加以人工智能的支持,计算机就可以自行对视频进行分析和判断,发现异常情况直接报警,带来了更高的效率和准确度;在反恐领域,借助机器的人脸识别技术也要远远优于人的主观判断。
许多科技巨头也开始了在图像识别和人工智能领域的布局,Facebook签下的人工智能专家YannLeCun最重大的成就就是在图像识别领域,其提出的LeNet为代表的卷积神经网络,在应用到各种不同的图像识别任务时都取得了不错效果,被认为是通用图像识别系统的代表之一;Google借助模拟神经网络“DistBelief”通过对数百万份YouTube视频的学习自行掌握了猫的关键特征,这是机器在没有人帮助的情况下自己读懂了猫的概念。值得一提的是,负责这个项目的AndrewNG已经转投百度领导百度研究院,其一个重要的研究方向就是人工智能和图像识别。这也能看出国内科技公司对图像识别技术以及人工智能技术的重视程度。
图像识别技术,连接着机器和这个一无所知的世界,帮助它越发了解这个世界,并最终代替我们完成更多的任务。
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。
下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。
下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。
交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
扩频技术的历史、现状及发展趋势综述
一、引言扩频技术(SpreadSpectrum,SS)的历史可以追溯到20世纪50年代中期,但是直到80年代初,扩频技术仍然主要应用在军事通信和保密通信中。随着个人通信业务的发展以及全球定位系统的应用,到现在为止,使用扩频技术的用户已经超过一亿[1]。无线通信已经成为电信产业最大的部门之一,经过十年多的稳步发展,俨然是21世纪中最有发展潜力的领域[2]。扩频技术在未来无线系统中的应用也再次成为人们关注的重点。为了更好地把握扩频技术在无线通信中的应用,本文首先介绍扩频技术的基本情况,然后回顾扩频技术的历史,并对其研究现状进行讨论,最后结合无线通信系统的发展趋势,主要是第四代移动通信系统(4G),着重研究扩频技术的发展趋势及其在未来无线通信系统中的应用。二、扩频技术简介扩频通信系统具备3个主要特征:①载波是一种不可预测的,或称之为伪随机的宽带信号;②载波的带宽比调制数据的带宽要宽得多;③接收过程是通过将本地产生的宽带载波信号的复制信号与接收到的宽带信号相关来实现的。频谱扩展的方式主要有以下几种:直序扩频(DSSS)使用高速伪随机码对要传输的低速数据进行扩频调制;跳频系统则利用伪随机码控制载波频率在一个更宽的频带内变化;跳时则是数据的传输时隙是伪随机的;线性调频系统中的频率扩展则是一个线性变化的过程。几种方式组合的混合系统也经常得到应用。衡量扩频系统最重要的一个指标就是扩频增益,又称为处理增益。正是因为扩频系统本身具有的特征使其性能具有一系列的优势:①低截获概率;②抗干扰能力强;③高精度测距;④多址接入;⑤保密性强。也正是这些特性使其获得了广泛的应用。三、扩频技术的历史扩频通信技术最初是在军事抗干扰通信中发展起来的[3],后来又在移动通信中得到广泛的应用[4],因此扩频技术的历史经历了两个发展阶段,而目前它在这两个领域仍占据重要的地位。1.在军事通信中的应用扩频通信系统是在50年代中期产生的,其最初的应用包括军事抗干扰通信、导航系统、抗多径实验系统以及其它方面[5]。扩频技术的最初构想是在第二次世界大战期间形成的。在战争后期,干扰和抗干扰技术成为决定胜负的重要因素。战后得出了“最好的抗干扰措施就是好的工程设计和扩展工作频率”的结论。跳频通信的思路就是在这段时期出现的:如果对窄带信号使用编码的频率控制,则可以使其在任何时间占据宽频段中的任何一部分,这样敌人要进行干扰就必须维持很宽的频段。另一方面,直序扩频则起源于导航系统中高精度测距。真正实用的扩频通信系统是在50年代中期发展起来的。麻省理工学院林肯实验室开发的扩频通信系统F9C-A/Rake系统被公认为第一个成功的扩频通信系统,在该系统的研制过程中,首次提出了瑞克(RAKE)接收的概念并成功应用,该系统也是第一个真正实用的宽带通信系统。第一个跳频扩频通信系统BLADES也在这段时期研制成功,在该系统中第一次利用移位寄存序列实现纠错编码。在此期间,喷气实验室(JPL)在其空间任务中完成了伪码产生器的设计以及跟踪环路的设计。自从扩频通信的概念在50年代开始成熟以后,此后的二十多年扩频通信技术仍得到很大的发展,但都只是局部的发展,如硬件的改进和应用领域的拓展。而个人通信业务(PCS)的发展终于使扩频技术迎来了另一次大发展的机遇。2.在民用通信中的应用一直到80年代初期,扩频通信的概念都只是在军事通信系统中得到应用,这种状况到了80年代中期才得到改变。美国联邦通信委员会(FCC)于1985年5月发布了一份关于将扩频技术应用到民用通信的报告[6]。从此,扩频通信技术获得了更加广阔的应用空间。扩频技术最初在无绳电话中获得成功应用,因为当时已经没有可用的频段供无绳电话使用,而扩频通信技术允许与其它通信系统共用频段,所以扩频技术在无绳电话的通信系统中获得了其在民用通信系统中应用的第一次成功经历。而真正使扩频通信技术成为当今通信领域研究热点的原因是码分多址(CDMA)的应用。90年代初,在第一代模拟蜂窝通信系统的基础上,出现了PCS研究的热潮。要实现PCS并考虑其长期发展,需要FCC为其分配100~200MHz的带宽,而与频谱分配相关的一个重要技术因素就是多址技术。当时频谱资源的分配已经是非常拥挤,不存在还未分配且可用的一段宽达100MHz的频谱资源。要为PCS分配可用的频段就只有2种方案:一是为PCS分配一段专用频谱,使正在使用该频谱的用户换到其它的频段;另一种办法就是让PCS与其它用户共享一段频谱[7]。采取第一种方案将要遇到巨大的政治和经济阻碍:当时只有政府使用的一些频段还比较宽松,因此只能是让政府用户换用其它频段来为PCS腾出频谱资源;同时换用频段意味着已有设备的射频部分需要改造。因此第二种方案成为合理的选择。扩频技术为共享频谱提供了可能。使用扩频技术能够实现码分多址,即在多用户通信系统中所有用户共享同一频段,但是通过给每个用户分配不同的扩频码实现多址通信。利用扩频码的自相关特性能够实现对给定用户信号的正确接收;将其他用户的信号看作干扰,利用扩频码的互相关特性,能够有效抑制用户之间的干扰。此外由于扩频用户具有类似白噪声的宽带特性,它对其它共享频段的传统用户的干扰也达到最小。由于采用CDMA技术能够实现与传统用户共享频谱,因此它也就成为PCS首选的多址方案。随着PCS以及蜂窝移动通信的发展,CDMA技术已经成为不可或缺的关键技术。扩频通信技术也在民用通信中找到更为广阔的应用空间,而关于CDMA技术的研究热潮也一直延续到现在。四、扩频技术的现状1.扩频技术的研究现状扩频技术由于其本身具备的优良性能而得到广泛应用,到目前为止,其最主要的两个应用领域仍是军事抗干扰通信和移动通信系统,而跳频系统与直扩系统则分别是在这两个领域应用最多的扩频方式。一般而言,跳频系统主要在军事通信中对抗故意干扰,在卫星通信中也用于保密通信,而直扩系统则主要是一种民用技术。对跳频系统的分析,现在仍集中在其对抗各种干扰的性能方面,如对抗部分边带干扰[8]以及多频干扰[9]等。而直扩系统,即DS-CDMA系统,在移动通信系统中的应用则成为扩频技术的主流。欧洲的GSM标准和北美的以CDMA技术为基础的IS-95都在第二代移动通信系统(2G)的应用中取得了巨大的成功。而在目前所有建议的第三代移动通信系统(3G)标准中(除了EDGE)都采用了某种形式的CDMA。因此CDMA技术成为目前扩频技术中研究最多的对象,其中又以码捕获技术和多用户检测(MUD)技术代表了目前扩频技术研究的现状。2.码捕获同步的实现是直扩系统中一个关键问题。只有在接收机将本地产生的伪码和接收信号中调制信息的伪码实现同步以后,才有可能实现直序扩频通信的各种优点。同步过程分为两步来实现:首先是捕获阶段,实现对接收信号中伪码的粗跟踪;然后是跟踪阶段,实现对伪码的精确跟踪。目前的研究主要集中在码捕获过程。目前对码捕获的研究主要集中在对周期较长的码实现捕获的问题,也就是快速捕获的问题。以前采用的主要是串行捕获方法,这种方案实现简单,但捕获速度不能满足要求。而现在大规模集成电路的应用使并行捕获方案成为可能,但系统的复杂度很高,因此研究的目标就是实现码捕获时间性能和系统复杂度之间的折衷。在串行捕获方案中,双停顿时间搜索法和序贯检测法都是缩短捕获时间的有效方法,利用一些新的搜索算法进一步改进这些系统的性能成为研究的热点[10,11]。此外以前主要研究的是高斯信道下的捕获性能,现在则考虑到非高斯信道下的捕获性能[12],以及在有频偏等影响条件下捕获性能。3.多用户检测CDMA系统容量受到来自其他用户的多址干扰的限制,多用户检测能够利用这些多址干扰来改善接收机的性能,因此是一种提高系统容量的有效方法。传统的CDMA接收机是由一系列单用户检测器组成,每个检测器都是与特定扩频码对应的相关器,它并没有考虑多址干扰的结构,而是把来自其它用户的干扰当成加性噪声,因此当用户数量增加时,其性能急剧下降。通过对所有用户的联合译码可以极大地改善CDMA系统的性能。但是最优的多用户接收机,其复杂度随用户数量成指数增长,因此在实际通信系统中几乎不可能实现。这样寻找在性能和复杂度之间折中的次最优多用户检测器成为研究的热点。目前研究的次最优多用户检测器主要可分为两大类:线性检测器和反馈检测器。前者包括解相关检测器、最小均方误差序列检测器等;后者则包括多级检测器、判决反馈检测器、顺序干扰撤销和并行干扰撤销检测器等。考虑信道编码的多用户接收机又可以分为非迭代接收机和迭代接收机[13]。这些检测器的实现都需要知道预期用户的扩频码、定时信息以及信道冲击响应,有时还需要知道多用户干扰。这些信息可以通过发送导频序列获得,但使用导频序列就降低了系统的频谱利用效率,因此不使用导频序列的多用户检测方法,又称为盲多用户检测器,也正在得到深入的研究[14]。五、扩频技术的展望
1 扩频技术的发展趋势
从扩频技术的历史可以看出,每一次技术上的大发展都是由巨大的需求驱动的。军事通信抗干扰的驱动以及个人通信业务的驱动使得扩频技术的抗干扰性能和码分多址能力得到最大限度的挖掘。展望未来,第四代移动通信系统(4G)的驱动无疑会使扩频技术传输高速数据的能力得到更大的拓展。3G设计的目标主要是支持多媒体业务的高速数据传输,因此其研究主要集中在新标准和新硬件的开发。而对于3G以后的发展,不同的研究者有不同的观点。但是从用户的观点看,4G应该具备以下的主要特征:①最大的灵活性,应该能够满足在任何时间和地点,通过任何设备都可以实现通信;②降低成本,4G在实现比3G的传输速率高1~2个数量级的同时,还应该使成本降为3G时的1/10或1/100;③个性化和综合化的业务,不仅仅是保证每个人都能通过一个终端进行通信,而要在人周围的家庭、办公室以及热点地区建立一个通用的信息环境,使每个人都可以根据需要以各种方式获得信息。对4G的认识不同,采取的技术解决手段也各不一样。目前实现4G观点主要有2种:一种是开发新的无线接口和技术;另一种则是集成现有的及未来的无线系统。前者关注新技术的应用,例如多载波调制技术,即OFDM,是一种传输高速数据的有效调制方案,被认为有望成为4G的标准调制技术。而另一种观点则认为,更重要的是将现有的和未来的通信系统集成,其中的网络包括无线局域网(WLANs)、无线个域网(WPANs)、AdHoc网络以及家庭局域网等,其中连接的设备则包括便携式移动终端、固定设备、个人电脑以及娱乐设备等[15]。超宽带(UWB)技术以及软件无线电(SDR)技术在无线网络集成方面也起着重要的作用。在4G网络的实现中,有的技术本身就是扩频技术的延伸,有的则能够很好得与扩频技术结合,还有的则能用于扩频系统的实现,因此这些新技术的发展体现着扩频技术的发展趋势。
2.超宽带技术
衡量扩频系统的重要指标是扩频增益,在一定的传输带宽下,要提高有效数据的传输速率就要降低扩频增益,而扩频增益的下降也意味着扩频系统性能的降低,因此要提高传输数据速率,而且不降低扩频系统的性能(即保证一定的扩频增益),就只有提高传输带宽。超宽带(UWB)技术可以看作是一种将传输带宽极大扩展以获得高数据传输速率的扩频技术。UWB作为一种短距离通信技术在未来无线通信系统的实现中扮演着重要的角色。在3G向4G转变的过程中,要求实现无所不在的通信平台,短距离无线设备和业务的设计、配置和应用也达到前所未有的高度。目前的短距离无线设备和网络主要是基于IEEE802系列无线标准的WLANs/WPANs,但是这些网络和设备都是独立工作的,它们要么单独地工作在室内和办公室环境,要么单独地工作在开阔的公共地区,完全没有考虑它们之间的互连问题。此外,未来无线通信系统对短距离通信的高速数据传输也会提出更高的要求,而高速数据传输带来的最大问题就是频谱资源紧缺。UWB技术的出现为解决这些难题提供了可能的方案[16]。UWB技术通过共享频谱,而不是寻找目前存在但实用性不高的频谱来实现短距离高速数据传输,它有效地解决了频谱分配问题,因此自从FCC在2002年2月14日颁布了将UWB技术用于商用的法规以后,UWB技术的研究热潮始终高涨。与现有的各种无线通信技术相比,UWB有着明显不同的工作原理和应用特性。传统的无线通信技术使用连续电波作为通信载波,即用某种调制方式将信号加载到连续电波上,并且连续电波被限定在小范围的频段上(一般约为6MHz)。而UWB技术不使用连续电波,它通过非常短、非常快而“离散”的电子脉冲来传输信号,由编码来控制脉冲的发送时间,脉冲本身就形成了数字通信中的“0”或“1”,并且脉冲可以覆盖范围非常广泛的频段(可以在几赫到几吉赫之间)。正是由于其独特的工作原理使它具备下列优点:隐蔽性好;极低的截获率;处理增益高;多径分辨能力强;传输速率高;系统容量大;低功耗等。但是UWB系统的实现还有很多关键技术需要突破,因此可以说UWB技术的发展是机遇和挑战并存。
3.多载波调制技术
多载波调制技术,即正交频分多址(OFDM),是一种有效的传输高速数据的方法,它已经成为一系列重要的高速数据传输应用的标准。OFDM和CDMA的结合也为解决未来无线通信系统的难题提供了技术选择。在传统的串行数据系统中,符号是顺序发射的,每个数据符号的频谱都可以占用整个可用频谱。由于瑞利信道的突发特性,一些邻近的符号可能会由于衰落而受到严重的破坏。在这种系统中,要实现高速数据传输,要么使用高阶调制牺牲系统性能,要么降低符号间隔使得信道带宽增大。然而延时扩展使系统具有一个等待周期,这个周期决定下一个脉冲何时可以发射。同时,这个等待周期要求信号采样速率降低到比延时扩展的倒数小得多的情况以防止符号间干扰。降低符号间隔使得系统更容易受到延时扩展的干扰。为了解决串行系统遇到的许多困难,采用并行或多路数据系统是一种可能的解决方案。并行系统同时传输几个顺序数据流,因此在任何时间内都有多个数据元素在传输。在这样的系统中,单个数据元素的频谱通常只占用整个可用频谱的一部分。在典型的并行数据系统中,整个信号频谱分解成N个频率不重叠的子信道。每个子信道都调制独立的符号,这样N个子信道就实现频率分割。如果每个独立信道的频谱允许重叠,同时在接收机使每个子信道具有特定的正交限制以便分离,则并行系统利用频谱的效率更高,这就是OFDM的基本思想[17]。组合CDMA和OFDM的多载波CDMA方案主要可分为两大类:一种是频域扩展系统,即MC-CDMA(MulticarrierCDMA),也称为OFDM-CDMA;另一种则是时域扩展系统,包括MC-DS-CDMA以及MT-CDMA(MultitoneCDMA)。MC-CDMA的发射机在频域使用一定的扩频码将原始数据扩展到不同的子载波进行传输。时域扩展的多载波调制方案又可分为两类。MC-DS-CDMA的发射机先将原始数据流进行串并变换,然后在时域上使用一定的扩频码对变换后的数据流扩频,再分别调制到不同的子载波上进行传输。MT-CDMA的发射机结构与MC-DS-CDMA相似,不过它采用的扩频码周期更长。对这些多载波调制方案的系统实现、检测算法以及误码性能都有较详细的研究比较[18]。此外,在更通用的MC-DS-CDMA方案则同时在频域和时域对信号进行扩展,并被证明这种调制方案能够适应包括室内、乡村、郊区以及城市在内的各种传播环境,从而适应未来无线通信系统的要求[19]。此外,一种组合OFDM和MC-DS-CDMA的调制方案,即下行链路采用OFDM而上行链路采用MC-DS-CDMA,成为4G调制标准的候选方案之一[20]。
4.软件无线电
目前国际电联承认的3G标准包括WCDMA、CDMA2000以及我国提出的TDS-CDMA。虽然从市场的角度考虑,采用一种标准更为经济,但是亚洲、欧洲和美国之间的竞争决定了未来的移动通信系统很难确定唯一的标准。而未来的通信系统要求为用户提供通用的平台,以满足用户在任何时间、任何地点通过任何设备接入网络的要求。采用软件无线电的概念,即通过软件加载在一个通用的硬件平台上实现多种功能,为未来通信网络的实现提供了可能的解决方案[21]。软件无线电就是将模块化、标准化的硬件单元通过标准接口构成基本平台,并借助软件加载实现各种无线通信功能的一种开放式体系结构。软件无线电通过使用自适应的软件和灵活的硬件平台,能够解决无线产业不断演变和技术革新带来的很多问题。它在基站和移动终端的软件下载能力,对于运营商和制造商弥补软件缺陷以及实现新功能和业务非常重要。此外使用软件下载重新配置移动终端是实现多模式终端操作的有效方法,这也为用户通过一个移动终端接入多个通信系统的问题提供解决手段。扩频技术是未来无线通信系统中的关键技术,而软件无线电是实现未来无线通信系统的有效手段,因此采用软件无线电技术来实现扩频通信系统是很自然的思路。目前虽然软件无线电还有很多关键技术需要突破,但是其在无线通信系统中的应用成果也是显著的,用软件无线电技术来实现扩频系统的研究也一直在继续[22]。
六、结论
在对扩频技术历史的回顾、现状的总结和未来的展望中,我们也得到一些有益的结论:(1)应用的驱动一直是扩频技术发展的强大动力,在军事抗干扰和个人通信业务中的应用是驱动扩频技术发展的两个里程碑,而在第四代移动通信系统(4G)中的应用无疑又将成为扩频技术发展的又一转折点;(2)扩频技术在发展的初始阶段,就已经实现了理论和技术上的重大突破;在此后的发展过程中主要是硬件的改善和性能的提高;发展到现在,则主要从系统的角度考虑总体性能,即各项指标之间的折中,这也体现了目前的研究更加精细和深入;(3)扩频技术自身的理论和技术都已趋于完善,其再一次实现大发展的机遇存在于与其它新技术的结合之中;(4)新技术的发展以及现有无线系统的集成是4G系统发展的两个方向,而扩频技术在这两方面都大有可为之处,因此只有在4G系统这个大背景下,才能更好地把握扩频技术的发展方向。
参考文献
[1]AJViterbi.SpreadSpectrumCommunications:MythsAndRealities[J].IEEECommunicationsMagzine.50thAnniversaryCommemorativeIssue,May2002:34~41.[2]TSPappaport,AAnnamalai,RMBuehrer,etal.WirelessCommunications:PastEventsAndAFuturePerspective[J].IEEECommunicationsMagzine.50thAnniversaryCommemorativeIssue,May2002:148~161.[3]RAScholtz.TheOriginsofSpread-SpectrumCommunications[J].IEEETrans.Commun.,May1982,30:822~854.[4]AJViterbi.WirelessDigitalCommunication:AViewBasedonThreeLessonsLearned[J].IEEECommunicationsMagzine,September1991:33~36.[5]RlPickholtz,DLSchilling,LBMisltein.TheoryofSpread-SpectrumCommunications——ATutorial[J].IEEETrans.Commun.,May1982,30:855~884.[6]DBNewman.FCCAuthorizesSpreadSpectrum[J].IEEECommunicationsMagzine,1986,24(7):46~47.[7]JTTaylor,JKOmura.SpreadSprectrumTechnology:ASolutiontothePersonalCommunicationsServicesFrequencyAllocationDilemma[J].IEEECommunicationsMagzine,February1991:48~51.[8]YKamiya,OBesson.InterferenceRejectionforFrenquency-HoppingCommunicationSystemsUsingaConstantPowerAlgorithm[J].IEEETrans.Commun.,2003,51(4).[9]YSShen,SLSu.PerformanceAnalysisofanFFH/BFSKReceiverWithRation-StatisticCombininginaFadingChannelWithMultitoneInterference[J].IEEETrans.Commun.,2003,51(10).[10]Oh-SoonShin,KBLee.DifferentiallyCoherentCombiningforDouble-dwellCodeAcquisitioninDS-CDMASystems[J].IEEETrans.Commun.,2003,51(7):1046~1050.[11]Lie-LiangYang,LHanzo.Acquisitionofm-sequencesUsingRecursiveSoftSequentialEstimation[J].IEEETrans.Commun.,2004,52(2):199~204.[12]SYoon,LSong,SYKing.CodeAcquisitionforDS/SSCommunicationsinNon-gaussianImpulseChannels[J].IEEETrans.Commun.,2004,52(2):187~190.[13]DStienstra,AKKhandani,WenTong.IterativeMultiuserTurbo-CodeReceiverforDS-CDMA[J].IEEETrans.VehicleTechnology,2003,52(2):365~373.[14]JKTugnait,JinghongMa.BlindMultiuserDetectionforCode-HoppingDS-CDMASignalsinAsynchronousMultipathChannels[J].IEEETrans.WirelessCommunications,2004,3(2):466~476.[15]SYHui,KHYeung.ChallengesintheMigrationto4GMobileSystems[J]IEEECommunicationsMagzine.December2003:54~59.[16]DPorcino,WHirt.Ultra-WidebandRadioTechnology:PotentiaoandChallengesAhead[J].IEEECommunicationsMagzine,July2003:66~74.[17]LJCimini.AnalysisandSimulationofaDigitalMobileChannelUsingOrthogonalFrequencyDivisionMultiplexing[J].IEEETrans.Commun.,1985,33(7):665~675.[18]SHara,RPrasad.OverviewOfMulticarrierCDMA[J].IEEECommunicationsMagzine,December1997:126~133.[19]Lie-LiangYang,LHanzo.MulticarrierDS-CDMA:AMultipleAccessSchemeforUbiquitousBroadbandWirelessCommunications[J].IEEECommunicationsMagzine,October2003:116~124.[20]REsmailzadeh,MNakagawa,AJones.TDD-CDMAForThe4THGenerationofWirelessCommunications[J].IEEEWirelessCommunications,August2003:8~15.[21]FWatanabe,MOhashiHNakamura,etal.ExpectationsonSoftwareDefinedRadio(SDR)inStandardizationForaonFutureMobileCommunicationSystems[J].IEICETrans.Commun.,2003,E86-B(12):3366~3373.[22]MasaakiFujii.Space-codeTransmitDiversityforOFDM-CDMSystem[J].IEICETrans.Commun.,2003,E86-B(12):3468~3475.
作者:丁溯泉,杨知行,潘长勇,郭兴波
清华大学电子工程系微波与数字通信国家重点实验室,北京100084