这个siri到底是人工智能,还是人工智障啊
那么问题来了,到底谁是白痴?
【4】
阿S真的过于贴心了!
【5】
就这么被说服了真的好吗?
【6】
没毛病,反正都能懂。
【7】
没想到你是这样的siri!
【8】
还真是个绝妙的主意的~
【9】
记住,不要惹一个不能吃东西的吃货,瞅瞅这暴脾气!
【10】
这个siri有点冷,够酷。
【11】
我告诉你我报警了!
【12】
认真是认真,就是有点憨。
智能的人工千篇一律,“有趣”的siri万里挑一,这一个个的有点过于好笑了!你们曾和siri有过哪些智障的对话吗?留言里都来分享一下吧~返回搜狐,查看更多
人工智能还是人工智障
这个过程并非一帆风顺。
上世纪80年代前后,日本人研究了一种能够模拟人类专家决策能力的计算机系统,称为专家系统。这个专家系统实际上就是一个巨大的知识库,再通过一些推理规则让这个系统能够根据提问找到答案。
这种专家系统能够根据输入的问题,提供回答是当时人工智能技术的代表,一定程度上也是计算机“智能化”的表现。因此这个项目得到日本政府的高度重视,投入了大量的人力物力研究,希望能打造一个计算速度更快、知识储备量更高的专家系统。受到日本人的刺激,同期美国和许多欧洲国家也纷纷进入到这个赛道中。
可以预见的是,专家系统最初取得的成功是有限的,因为它无法自我学习并更新知识库,维护成本极高。就像以前没有联网的车载导航系统一样,每年都需要更新地图否则这个系统一年以后就废掉了,无法给出正确的指引。
专家系统的失败,也让人们对于人工智能的信任产生了巨大的危机,硬件市场的溃败和理论研究的迷茫,加上各国政府和机构纷纷停止向人工智能研究领域投入资金,导致了数年的低谷。
好在资本不再关注人工智能的时候,人工智能的理论研究还在缓慢进行中。1988年,美国科学家JudeaPearl将概率统计方法引入人工智能的推理过程中,这对后来人工智能的发展起到了重大影响。1989年,AT&T贝尔实验室的YannLeCun和团队使用卷积神经网络技术,实现了人工智能识别手写的邮政编码数字图像。
在此后近二十年,人工智能技术逐渐与计算机技术、互联网进行深入融合。得益于大规模并行计算、大数据、深度学习算法和人脑芯片这四大催化剂的发展,以及计算成本的降低,使得人工智能技术突飞猛进。
它利用计算机和互联网的发展机遇,化名为商业智能、数据分析、信息化、自动化等等,渗透到社会发展的每个角落。
一方面,互联网的推广为人工智能创造了很多落地应用的场景,体现出真正的价值;另一方面,计算机软硬件的升级为人工智能提供了强大的运算力,以前在理论上才能实现的算法得以落地,让人工智能在越来越多赛事上创造奇迹,甚至超越人类。2011年沃森在自然语言常识问答比赛中战胜人类选手,ImageNet挑战赛上图像识别算法准确度超越人类;2016年,AlphaGo战胜李世石,成为第一个战胜世界围棋冠军的AI机器人…
二、人工智能还是人工智障?
近两年人工智能被人们诟病最多的地方是:人工智能体现不出智能。
很多人对人工智能的认知都是分裂的。一方面媒体不断报道人工智能又取得了什么样的新成果,国外各路大咖让人们要警惕人工智能的发展,人工智能还被纳入我国发展的规划中等等。
另一方面,新闻里经常传出自动驾驶又发生事故,家里的智能家具表现地像个智障一样,资讯平台总是傻傻地推同样类型的新闻等,这些现象都让我们疑惑,人工智能到底智能在哪里?
回答这个问题之前,我们有必要搞清楚,强人工智能和弱人工智能的区别。
最初,在达特茅斯会议提出人工智能一词时并没有强与弱之分。普遍认为人工智能就是让机器拥有思想,能够像人类一样决策。当时各种算法的研究也是奔着这个目标而去,希望能够模拟人类决策的方式赋予机器真正的智能。
但很快就有人发现:在这种方式下实现的人工智能并非真正的智能,只是对人类智能的模拟。美国哲学家JohnSearle提出了一个思维实验:中文房间(ChineseRoomArgument),它是这样的:
想象一位只会英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸和铅笔。
写着中文的纸片通过小窗口被送入房间中。房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。
想象一位只会英语的人身处一个房间之中,这间房间除了门上有一个小窗口以外,全部都是封闭的。他随身带着一本写有中文翻译程序的书。房间里还有足够的稿纸和铅笔。
写着中文的纸片通过小窗口被送入房间中。房间中的人可以使用他的书来翻译这些文字并用中文回复。虽然他完全不会中文,Searle认为通过这个过程,房间里的人可以让任何房间外的人以为他会说流利的中文。
值得注意的是,这本书仅仅是语法的对应,并不涉及到任何语义的说明。房间中的人,只需要按照对应的回答,拼凑出相应的中文字符递出去即可。在这个过程中,他并不理解问题和他所写的答案是什么意思。
Searle认为,人工智能就是这样工作的。他认为计算机根本无法真正理解接收到的信息,但它们可以运行一个程序,处理信息,然后给出一个智能的印象。
例如图像识别技术,它的工作原理就是将颜色变成数字编码,再从这些数字编码中找到特征,查找字典,找到对应的解释然后显示出来。实际上计算机压根不知道自己识别的到底是飞机还是兔子,只是字典告诉它这个特征很大概率对应的是“飞机”这个单词。
绝大部分算法在本质上都是在玩概率的游戏,不同的方式只是在模型训练时需要的信息不同,以及计算出来对应“飞机”的判定方式不同。
当前所有被广泛应用的知名模型都是通过矩阵运算训练数据来获得某种概率分布。复杂模型的概率分布通常是高维的,这里又会引申出各种数学方法,但本质的思想依旧是想通过概率分布来描述训练数据的特征。有了这些,对于同类的数据,就可以使用相同的概率分布去描述,从而实现所谓的“识别”或“预测”。
实际上并非模型真的像人类一样理解了什么是“飞机”,只是通过这种方式,模型能够大概率把长得像飞机的图片识别出来。
后来业界也普遍认识到这一点。因此把人工智能这个概念又划分为强人工智能与弱人工智能。
强人工智能流派仍然追求让计算机拥有人类的心智与意识,具有自主选择行为。就像西部世界中从固化程序逐渐演化出自我意识的梅芙一样。但是强人工智能的研究难度较大,市面上还没有成熟的应用。
而弱人工智能更像是一个解决特定问题的工具。这类问题的特点是可以通过统计,归纳出经验并形成解决方案,而这种解决问题的实现方法被称为“机器学习”。
机器学习最基本的做法,是使用算法解析数据、从中学习数据的规律,然后对真实世界中的事件做出决策。与传统的编程方式不同,机器学习是用大量的数据进行训练,通过各种算法从数据中学习“如何完成任务”。
例如量化交易、人脸识别和AlphaGo都是擅长于单个方面的机器学习模型。在训练模型时,我们只教会AlphaGo下围棋的技巧,所以它只能会下围棋。如果你把一道数学题丢给AlphaGo,显然它是无从下手的。
所有的机器学习模型都只能完成特定的任务,很多时候我们通过组合的方式满足更多的场景。例如智能音箱本质上是一个语音识别的模型结合NLP(自然语言处理)模型,它并非真的能听懂我们说的话代表什么含义,仅仅是能够把接收到的信息转化为模型的输入,在字典中找到对应的输出而已。
从机器学习的特点可以看出来,如果想通过统计归纳经验,数据的数量与质量是决定性条件。没有数据,就没有人工智能。
也就是说在你没有作出同类别行为,或者是与你行为相近的人群较少时,人工智能是没有办法作出判断的,这也是人工智能变成人工智障的重要原因。当行为增加,数据慢慢变多,数据质量逐渐上升时,你会发现预测越来越准确,人工智能通过大数据也能做到真正的“想你所想”。
三、什么问题适合用机器学习解决?
前面我们说弱人工智能像工具,专门解决某个特定的问题。但是否所有问题都适合用机器学习去解决呢?很明显答案是否定的。
适合用机器学习去解决的问题,主要有三个基本条件。
(1)有规律可以学习。这类问题必须存在共性,有内在的规律等待被发现;
(2)编程难以实现。数据之间关联关系复杂,很难通过穷举的方式列清楚规则;
(3)有足够多能够学习到规律的数据。没有数据支撑,机器学习就像搭好了结构少了砖瓦的房子。
举个栗子:
我们熟知的垃圾邮件检测是一个使用机器学习解决的经典场景。最常见的垃圾邮件是各种类型的营销邮件,并且这种邮件的发送方通常是各类用邮箱注册过的网站。在这个场景中我们发现,营销邮件一定是包含某些产品信息或推广信息,所以这类邮件有一定的规律。
但是因为不同产品种类各异,我们很难用编程的方式把所有规则写出来。就算能写出来,发送方也会设计各种规则躲避系统的检测,同时我们很容易找到大量垃圾邮件与正常邮件作为样本数据。因此这个场景非常适合用机器学习的方式解决。
但如果我们想判断新邮件包含多少个字符,恐怕就不太适用。虽然这个问题同样难以用编程解决并且有大量历史邮件支持,但包含多少个字符这个问题的随机性太强,没有规律可循,因此不适合。
由此可见,机器学习不是万能的,不是所有的问题都能用它去解决。机器学习擅长的是通过已知经验找到规律去解决问题。如果面对的问题没有任何规律可循,完全是一个随机事件,那么就算使用多复杂的机器学习算法也是无济于事。
值得注意的是,很多问题看似没有规律,实际上是因为人类处理不了数据量太大的情况,看起来杂乱的数据掩盖了背后的面目,这类问题并非真的无迹可寻,只是需要用正确的方法。
我们通过机器学习可以对大量数据进行分析获得规则,并利用规律对未知数据进行预测。不但能从数据中看到人类能看到的规律,更重要的是能在更短的时间内发现人类看不到的规律,我想这就是机器学习最大的应用价值。
在医学领域,通过图像识别技术,已经实现让计算机自动识别肿瘤细胞,帮助医生快速进行医学诊断;在制造业,通过强化学习的方式自动检测产品缺陷提高出品率,帮助企业加快生产周期降低生产成本;在金融领域,通过神经网络技术可以避免传统程序化交易因为无法根据实时发生的市场变动调整算法,从而造成资产损失的风险。还有在零售、安防、航空、互联网等等不同领域,机器学习都有广泛的应用,它已经对我们生活的产生了巨大的变化。
最后我们必须认识到,目前的人工智能并非真正的智能,只是一种模拟人类行为的智能。而真正的智能,离我们的生活还非常遥远。但值得庆幸的是,仅仅是模拟人类行为的智能已经能够给我们的生活带来了如此大的便利,相信随着技术的发展,我们能够做出更多超越想象的场景。
#专栏作家#
阿翘,微信公众号:阿翘AKIU。平安科技资深产品经理,《产品经理进阶:100个案例搞懂人工智能》作者;擅长人工智能技术在金融领域的商业化应用,实践经验丰富,对产品设计方法论有深入洞察。
题图来自Unsplash,基于CC0协议返回搜狐,查看更多
你以为的人工智能,都还是「人工智障」
来源:微信公众号“中信出版社”
今年初,海底捞开了一家全智能餐厅,里面号称从配菜、出菜到上菜环节都进行了人工智能化改造,全程都由机器人来完成服务。
大家纷纷表示要去打卡的同时,也感叹,人工智能真的越来越走进我们的生活了。
但在人工智能研究发展一片热火朝天时,有个人却说,你们的方向都错了,现在的人工智能的各种运用,根本连智能的门都没摸到。
他是谁?他为何这么说?我们认为的人工智能到底智能不?本期新常识,我们来一起讨论这些议题。
一、智能音箱到底智能吗?
语音智能设备,可能是最为普及的人工智能应用设备了。它由2011年的Siri起头,到2016年,中国科技公司也纷纷入局。
智能音箱慢慢从200美元的外国高科技,变成了200人民币的亲民小玩意儿。
据2018、2019年的调查显示,两年来中国每季度的智能音箱的销量,都在千万以上。618促销活动中,某度出品的“智能音箱”累积销量突破一百万。
似乎一夜之间,白菜价的“人工智能”走进了寻常人家。招呼一声就可以帮你开灯、查机票、看菜谱、定闹钟、逛网店,无聊了还可以赔聊。
那么,智能音箱的普及是不是标志着人工智能时代,终于来了?
这话说得还是太早了点。
虽然智能音箱听懂人话的技能令人惊叹,仿佛是个有灵魂的音箱。但是,在整个人工智能的理论体系上讲,它还是个很原始的产品。
从基本原理上讲,它的大部分主要功能,是基于一些并不复杂的逻辑:
1、语音识别
现在智能音箱可以听取大、小、远、近的声音指令,甚至一些方言,中英文混杂都难不倒它,可以说在语音识别方面已经做得十分优秀了。
不过语音识别在基本原理上并不复杂:一个语言的数据库,外加一套声音数据的算法。虽然技术在这套算法上越来越精细,不过这种“听写”的技能,远没有触及“智能”的核心领域。
2、优化搜索
不知道大家发现没,在人工智能领域领先的公司,大多是做搜索引擎的公司:谷歌、百度,还有同样自带搜索的淘宝和京东。
这背后的逻辑在于:目前我们看到的“机器智能”“机器理解”“机器翻译”,基础上是搜索的结果。
说白了,机器给你的回答,归根到底,都是搜出来的。所谓的“人工智能”,只不过是把已有的答案找出来,念给你听而已。
目前,“人工智能”搜得越来越好、越来越精准,还会记忆你的喜好。只是扒开它的底裤,它还是个搜索引擎而已。
3、对话机器人
Comscore(美国的一家信息服务公司)在2018年进行的一项调查显示,美国用户用得最多的智能音箱功能,居然是聊闲天。
现在智能音箱的聊天功能,简直让人觉得它有灵魂。
阿信准备了几道“送命题”调戏了一下自家的智能音箱,给大家体会一下。
阿信:我室友是个傻子怎么办?
音箱:傻人有傻福啊,你这么聪明怎么问出这么傻的问题?(竟无言以对)
阿信:我觉得人生没有指望了怎么办?
音箱:怎么会?你会发现生活中总有对你好的人。认真地对待生活,生活也会给你回报的。(好吧,似乎有那么点安慰效果)
阿信:你喜欢我吗?
音箱:你知道我对你,不仅仅是喜欢。(说得老脸一红)
看起来很厉害,是不是?不过,这看似的智能,但恰恰是“人工智能”中最原始的。
早在1966年,就有科学家设计出了能和人对话的程序。到如今,对话机器人(chatbot)说话越来越像个小机灵鬼。
即便如此,它本质上还是一个数据库,它会提取人话中的关键词,然后调用数据库中的内容,组织相应的回答。
1950年,人工智能先驱阿兰·图灵提出了“图灵测试”的预想,也就是说:如果人在和一个机器对话时,感觉不到对方是机器,那么这个机器才算具有人类智能。
综上,阿信又想了想,问了一个对人工智能来说是“跨学科”的超纲问题。
阿信:理查德·道金斯今年几岁?
音箱:我还小呢。(你是不是只听进去后四个字?你的百度百科呢?你的计算能力呢?)
除此之外,智能音箱还包含了影音资料库的关联、物联网等功能,它们和“人工智能”的关系就更远了。当然,这些本身都是很优秀的技术(手动狗头)。
那么,什么是更高级的人工智能呢?目前大家普遍接受的观点是(当然还有人不这么认为,这个到后面再说),运用到“深度学习”才算人工智能的高阶玩家。
二、深度学习下人工智能的新发展
前面我们虽然稍微diss了下智能音箱,但有一点还是要为它正名:智能音箱的核心——语音识别的高段位是需要动用到深度学习的,它也被认为是人工智能未来发展的方向。
如果哪天智能音箱能做到真正意义上的语音识别,那才可以说它是真的智能。
什么是更高级的语音识别?
用大白话讲,就是机器能够有理解句子意思的能力。
我们知道,同一句话,甚至同一个词,在不同语境下表达的意思可以千差万别。当机器经过千万次的神经网络训练获得了这种捕捉句意的能力,才算一只高级别的智能机器。
而这种神经网络训练,我们可以简单理解为深度学习。
深度学习根植于数学、计算机科学和神经科学中。它从数据中学习,就像婴儿认知周围世界那样,从睁开眼睛开始,到慢慢获得驾驭新环境所需的各种技能。
目前,深度学习在AI医疗的自动诊断、投资回报预判、牌场竞技、自动驾驶、智能翻译、情绪识别等领域都有比较前沿的运用成果。
三、颠覆贝叶斯理论的因果新科学
就当大家都以为深度学习是人工智能的发展未来时,贝叶斯网络之父朱迪亚·珀尔却说,现阶段的深度学习,根本谈不上是真正的人工智能。
朱迪亚·珀尔
要知道,人工智能的发展在很多方面都得益于珀尔早期的研究,但他却在最近推翻了自己,甚至说,沿着目前的基于贝叶斯网络开展的深度学习探究方向是错误的,这条路永远也到不了实现真正人工智能的彼岸。
于是,他提出了一个因果关系之梯的概念,说我们现在的人工智能研究都在因果之梯的第一层,也就是观察模仿层。
目前,人工智能的研究都局限在这个层级。
比如大家都觉得厉害得不得了的AlphaGo以4:1战胜了世界围棋顶尖高手李世石,但底层设计也是计算机上亿次对人类棋手动作的追踪、观察和记录。
当时网络上有人戏谑道:
“人工智能赢了不可怕,至少说明它还不懂得韬光隐晦,如果它假装输给人类,那才更加可怕。”
这句看似戏言的话,却暗藏了人工智能当前最大的发展瓶颈:只会学习和处理数据,却不懂得像人类一样去思考和模拟存在于数据之外的其他可能性。
而机器只有突破到第三层的“反事实”才能实现强人工智能。
在这一层级上进行的思维活动是想象、反思和理解。
珀尔将这一层级定义为反事实推理,刚好与尤瓦尔·赫拉利在《人类简史》中的观点不谋而合。
尤瓦尔认为,人类所以变成今天的样子,是忽然学会了“虚构”——从幻想某一棵大树可以保佑我们,一直到后来的有限责任公司和资本信贷体系,人类不断虚构出美丽的故事,最终建立起庞大而牢固的人类帝国。
人类发展出描绘虚构事物的能力正是人类进化过程中的认知革命,反事实推理是人类独有的能力,也是真正的智能。
尤瓦尔·赫拉利
当人工智能具备了“虚构”甚至“反事实推理”的能力时,那么强人工智能时代终将到来。
针对能否开发出具备自由意志的机器人的问题,珀尔的答案是绝!对!会!
四、人工智能的礼物:提升判断力
读到了这里,一定会有人问:人工智能都是科技圈的概念,跟我有什么关系的?就算我理解了人工智能的发展新方向,又有何用呢?
和我们的最大的关系是——提高个体的判断力和决策力。
当下的社会信息实在嘈杂,为了防止被蒙骗、被忽悠,我们都需要具备一些认知力和判断力傍身。
珀尔将判断力划归为五个层级。
1.相信权威
2.相信经典
3.人群研究
4.控制变量
5.随机实验
从1到5,是判断力逐渐提升的阶段。
套用这五个层级,举个栗子。
现在有一种卖得很贵的保健品,号称用的材料都是货真价实的珍贵的药材炼,对身体有好处,吃了可以延年益寿。
那问题来了,我们怎么能知道它是不是真有效呢?
最底层的判断力是既然这个东西“贵”,那就肯定有效。卖得贵,自然品质好。这就是相信权威,但显然逻辑是经不起推敲的。
“贵”可以让你觉得有效,最多相当于“理论上应该有效”——可真正有没有效,得看实践。
今年的春晚就有一个类似的卖假保健品的小品
于是,判断力升级至第二层:相信经典。
身边有个熟人吃了这个保健品有效,所以认为它有效。
一个例子能证明有效吗?可能熟人那几天偶然身体不好,本来不吃也能恢复,吃保健品和恢复完全是巧合。
所以,一个样本是没有参照意义的。你不仅要问身边的一个人,更要问身边的一群人,甚至将样本群放得更大。你才起码能大致了解吃了这个保健品到底有没有效。
第三层判断力是样本扩大后,对人群的研究。
保健品公司委托某野鸡大学出了一个报告,说吃了这个保健品的人群的身体状况,平均而言,比没吃的人群好。那这个报告能说明这个保健品有效吗?
还是不能。
保健品定价高,目标用户是高消费群体。这无形中向用户样本切了一刀:这些消费得起如此高昂保健品的人的医疗保障、生活环境、饮食结构各方面都比穷人要好,他们的身体状况、基因底子本来就“应该”更好。
你怎么能知道是吃了保健品的人身体好呢,还是身体好的人更容易买保健品吃呢?
鸡生蛋、蛋生鸡的哲思实在是太考验吃瓜群众的判断力了。事实上,大部分人的判断力都停留在这一层级上面。
想要继续攀升,就要引入一些统计学的方法论了。比如说:控制变量、随机实验等。
在当下的信息体系中获得一点知识是很难的。有谁能想到,一句“这东西真有效吗?”居然引出了一个规则怪异的数学游戏,这也正是科学家与吃瓜群众的区别。
吃瓜群众的判断方法多是看看产品介绍、询询价格、问问身边人的评价;稍稍精进一点的,在网上看看更多的用户评论。
而科学家的方法则是控制变量和做随机实验,这就是高判断力和低判断力的差距。
现在都说当今世界的贫富差距正在拉大,同样的,人跟人的判断力的差距更大。在这个知识碎片化满天飞的时代,没有一点判断力傍身,是万万不可的。
用训练人工智能的思维方法来训练我们的这种判断能力,也许正如珀尔所说,是“人工智能奉献给人类的第二个礼物”。
而未来的人工智能到底能不能如珀尔所说,拥有认知、预判和虚构故事的想象力,让我们拭目以待吧。
参考资料:
1.《为什么》[美] 朱迪亚·珀尔 著中信出版集团 2019.6
2.从海底捞无人餐厅,看2019人工智能新动向,搜狐网
3.Enge,Eric."RatingtheSmartsoftheDigital PersonalAssistantsin2018".