博舍

接口测试用例和报告模板 机器人测试用例分析报告怎么写的啊

接口测试用例和报告模板

当今在测试领域,接口测试已经越来越多的被提及,被重视。

区别于传统意义上的系统级别测试,很多测试人员在接触到接口测试的时候,也许对测试执行还可以比较顺利的上手,但一提到相关的归档,比如测试用例和报告,就有些不知所措了。

今天就用这篇文章来说说接口测试用例和报告。

 

1.接口用例模板

提到测试用例,我们知道,其中最重要的两个要素就是:

测试步骤预期结果

其实对于接口测试也同样如此;接口测试的步骤中,最重要的是将实现向接口发送预设请求,结果则要关注响应信息及后续处理。

所以接口测试用例编排可以考虑下列两种形式:

 

 

 

要注意的是,实际工作场景中我们可能还会对接口之间的串联和混合场景进行测试。

2.测试报告模板

 接口测试报告很多时候会和接口性能测试报告一起,如果要单独报告的话,可以考虑以下内容:

 

 

2.1系统接口概况

简要描述与测试项目相关的一些背景资料,如被测系统简介,项目上线计划等。

对于系统接口的定义和设计做出介绍,比如系统一共有多少个接口?采用哪种协议?都涉及到哪些发送方法?采用怎样的请求格式?使用怎样的返回标准?可用表格说明。

 

2.2测试目的与范围

描述本次接口测试的目的、范围与目标,内容应与本次接口测试的《接口测试实施方案》中的对应内容保持一致。

 

2.2.1.测试目的

本次测试的目的在于确保系统接口功能和逻辑处理已验证,符合《接口定义说明书》的定义和要求,满足系统需要。

 

2.2.2. 测试对象范围

说明测试的对象是哪些

单场景接口功能测试混合场景接口功能测试

详见《项目接口测试用例》可考虑贴出x-mind图

 

2.2.3. 测试指标范围被测接口接收请求和返回报文被测接口返回状态被测接口对应业务逻辑处理涉及数据沉淀的处理复杂场景下多接口串联交互2.3测试工具及资源2.3.1. 测试工具

说明本次测试使用到的测试工具和辅助工具

1.测试工具:该测试将使用Postman(例)

Postman是谷歌的一款接口测试插件,它使用简单,支持用例管理,支持get、post、文件上传、响应验证、变量管理、环境参数管理等功能,可以批量运行,并支持用例导出、导入。

2.辅助工具:略

 

2.3.2. 测试资源

成员

职责

总负责

张三

各组间工作协调、方案评审

测试组

李四

需求分析,测试方案编写,脚本编写,执行测试以及编写测试报告

 

2.4测试记录及结果分析2.4.1. 单场景接口测试2.4.1.1 测试结果数据

给出本次单场景接口测试的测试结果数据

用例

场景描述

被测接口

测试结果

备注

API001

用户登录接口

/user/login

通过

 

API002

用户登出接口

/user/logout

失败

Defect:41335

......

 

 

 

 2.4.1.2. 测试问题及结果分析

结合测试中发现的问题对于整体测试结果进行分析,做出判断。

l 接口业务功能错误类缺陷情况l 接口异常处理类缺陷情况l 接口处理数据沉淀缺陷类情况l 接口安全性缺陷情况

 

2.4.2. 混合场景接口测试2.4.2.1. 测试结果数据

   给出本次混合场景接口测试的测试结果数据

用例

场景描述

被测接口

测试结果

备注

APIm001

用户登录、搜索商品、查看商品

/user/login

/commodity/search

/commodity/pdp

通过

 

APIm002

用户登录、修改个人信息、上传头像

/user/login

/user/personalInfo

/user/personalInfo/portrait/upload

失败

Defect:41510

......

 

 

 

 

 

2.4.2.2. 测试问题及结果分析

结合测试中发现的问题对于整体测试结果进行分析,做出判断。

l 混合接口业务功能错误类缺陷情况;l 混合接口业务数据传递类缺陷情况; 2.5测试结论

 给出本次接口测试的测试总结论,一般以测试结果与测试目标的比较结果作为测试结论。

 

这份数据分析报告规范,写得很棒!

作者:吴迪「趣店数据分析师」

来源:趣店技术团队

我是小z

能不能写一份优秀的分析报告,是衡量分析师是否牛X的重要标准。

除了不同场景下特定的分析逻辑,怎么把分析报告写的更好,其实是有成体系方法论的。

今天给大家分享一篇关于数据分析报告规范的干货,常看常新,值得收藏和细品。

01 结构规范及写作

报告常用结构:

1.架构清晰、主次分明

数据分析报告要有一个清晰的架构,层次分明能降低阅读成本,有助于信息的传达。虽然不同类型的分析报告有其适用的呈现方式,但总的来说作为议论文的一种,大部分的分析报告还是适用总-分-(总) 的结构。

推荐学习金字塔原理,中心思想明确,结论先行,以上统下,归类分组,逻辑递进。行文结构先重要后次要,先全局后细节,先结论后原因,先结果后过程。对于不太重要的内容点到即止,舍弃细枝末节与主题不相关的东西。

2.核心结论先行、有逻辑有依据

结论求精不求多。大部分情况下,数据分析是为了发现问题,一份分析报告如果能有一个最重要的结论就已经达到目的。精简的结论能降低阅读者的阅读门槛,相反太繁琐、有问题的结论100个=0。报告要围绕分析的背景和目的以及要解决的问题,给出明确的答案和清晰的结论;相反,结论或主题太多会让人不知所云,不知道要表达什么。

分析结论一定要基于紧密严谨的数据分析推导过程,尽量不要有猜测性的结论,太主观的结论就会失去说服力,一个连自己都没有把握的结论千万不要在报告里误导别人。

但实际中,部分合理的猜测找不到直观可行的验证,在给出猜测性结论的时候,一定是基于合理的、有部分验证依据前提下,谨慎地给出结论,并且说明是猜测。如果在条件允许的前提下可以通过调研/回访的方式进行论证。

不回避 “不良结论” 。在数据准确、推导合理的基础上,发现产品或业务问题并直击痛点,这其实是数据分析的一大价值所在。

3.结合实际业务、建议合理

基于分析结论,要有针对性的建议或者提出详细解决方案,那么如何写建议呢?

首先,要搞清给谁提建议。不同的目标对象所处的位置不同,看问题的角度就不一样,比如高层更关注方向,分析报告需要提供业务的深度洞察和指出潜在机会点,中层及员工关注具体策略,基于分析结论能通过哪些具体措施去改善现状。

其次,要结合业务实际情况提建议。虽然建议是以数据分析为基础提出的,但仅从数据的角度去考虑就容易受到局限、甚至走入脱离业务忽略行业环境的误区,造成建议提了不如不提的结果。因此提出建议,一定要基于对业务的深刻了解和对实际情况的充分考虑。

再进一步,如果可以给出这个建议实施后的收益,下单转化提升多少、交易提升多少、能节省多少成本等,把价值点直接传递给阅读对象。

上面讲了报告的写作原则,举个例子,参考艾瑞网,《留存与未来-疫情背后的互联网发展趋势报告》:

Tips:尝试站在读者的角度去写分析报告,内容通俗易懂,用语规范谨慎。如果汇报对象不是该领域的专家,就要避免使用太多晦涩难懂的词句,同时报告中使用的名词术语一定要规范,要与既定的标准(如公司指标规范)以及业内公认的术语一致。

02数据使用及图表

数据分析往往是80%的数据处理,20%的分析。大部分时候,收集和处理数据确实会占据很多时间,最后才在正确数据的基础上做分析,既然一切都是为了找到正确的结论,那么保证数据准确就显得格外重要,否则一切努力都是误导别人。

1.分析需要基于可靠的数据源

用于鉴别信息/数据的可靠性,主要有四种方法:同类对比、狭义/广义比对、相关对比和演绎归谬。

同类对比:与口径相同或相近,但来源不同的信息进行对比。

示例:最常见就是把跑出来的数据和报表数据核对校验。

狭义/广义对比:通过与更广义(被包含)或更狭义(包含)的信息进行对比。

示例:3C品类销售额与商城总销售额比较,3C的销售额更高显然是错误的,因为商城总销售额包含3C销售额;某些页面/频道的UV与APP总UV比较也类似。 

相关对比:通过与具有相关性、关联性的信息进行对比。

示例:某平台的Dn留存率,对于同一个基准日期来说,D60留存率一定低于D30留存率的,如果出现大于的情况,那就是错误数据了。

演绎归谬:通过对现有证据的深入演绎,推导出结果,判断结果是否合理。

示例:比如某平台的销售客单价2000左右,总销售额1亿左右;计算得出当日交易用户数10万,通过乘以客单价,得到当天销售额2亿,显然与业务体量不符,为错误的数据。

Tips:以上都是常用的方法论,最核心是足够了解业务,对关键指标数据情况了然于心,那么对数据准确性的判断水到渠成。对此,建议是每日观测核心业务的数据情况,并分析波动原因,培养业务理解力和数据敏感度。

2.尽量图表化,提高可读性

用图表代替大量堆砌的数字,有助于阅读者更形象直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从。

让图表五脏俱全,一张图必须包含完整的元素,才能让阅读者一目了然。标题、图例、单位、脚注、资料来源这些图表元素就好比图表的五脏六腑。

要注意的条条框框。

首先,避免生出无意义的图表。决定做不做图的唯一标准就是能否帮助你有效地表达信息。

第二,不要把图表撑破。最好一张图表反映一个观点,突出重点,让读者迅速捕捉到核心思想。

第三,只选对的,不选复杂的。

第四,一句话标题。

常见的图表类型选择:

图表使用Tips:

折线图:选用的线型要相对粗些,线条一般不超过5条,不使用倾斜的标签,纵坐标轴一般刻度从0开始。预测值的线条线型改为虚线。

柱形图:同一数据序列使用相同的颜色。不使用倾斜的标签,纵坐标轴一般刻度从0开始。一般来说,柱形图最好添加数据标签,如果添加了数据标签,可以删除纵坐标刻度线和网格线。

条形图:同一数据序列使用相同的颜色。不使用倾斜的标签,最好添加数据标签,尽量让数据由大到小排列,方便阅读。

饼图:饼图使用场景相对少,如需使用,注意以下事项:把数据从12点钟的位置开始排列,最重要的成分紧靠12点钟的位置。数据项不要太多,保持在6项以内,不使用爆炸式的饼图分离。不过可以将某一片的扇区分离出来,前提是你希望强调这片扇区。饼图不使用图例。不使用3D效果。当扇区使用颜色填充时,推荐使用白色的边框线,具有较好的切割感。

警惕图表说谎

虚张声势的增长:人们喜欢研究一条线的发展趋势,例如股市、房价、销售额的增长趋势,有时候为了吸引读者故意夸大变化趋势,如图1通过截断数轴夸大增长速度,从正常数轴的图2看到增长是缓慢的。

3D效果的伪装:3D图形容易造成视觉偏差,如图1有3D效果,看上去A->B->C->D->E依次递增,实际是D>E,要格外小心图表的伪装。

03常见数据分析误区

“用数据说话”,已经成为一种流行语。

在很多人的心里,数据就代表着科学,科学就意味着真相。“数据不会骗人”,也成了说服别人时常用的口头禅,事实果真如此吗?让我们来谈谈那些常见的误区。

1.控制变量谬误

在做A/B测试时没有控制好变量,导致测试结果不能反映实验结果。或者在进行数据对比时,两个指标没有可比性。举个例子,为测试不同营销时间点对下的转化的影响,但A实验使用短信营销、B实验使用电话营销,未控制变量(营销方式),导致实验无法得出结论。

2.样本谬误

样本量不够

统计学的基础理论基石之一就是大数定律,只有当数据量达到一定程度后,才能反映出特定的规律。如果出现样本量极少的情况,建议把时间线拉长,获得足量的样本。或者将不重要的限定条件去掉,增加样本数。

存在选择性偏见或者幸存者偏见

统计学的另一大理论基石是中心极限定理。简单描述就是,总体样本中,任意一个群体样本的平均值,都会围绕在这个群体的整体平均值周围。

举个例子,在应用升级期间,衡量登录用户数、交易用户数等指标,来判断用户对新版本的喜欢是否优于老版本。听上去非常合理,但这里实际就隐藏了选择性偏见,因为新版本发布时,第一批升级上来的用户往往就是最活跃的用户,往往这批用户的指标较好,但不代表新版本更好。

混入脏数据

这种数据的破坏性比较大,可能得出错误的结论。通常我们会采用数据校验的手段,屏蔽掉校验失败的数据。同时,在分析具体业务时,也要针对特定业务,对所使用的数据进行合理性限定,过滤掉异常离群值,来确保拥有比较好的数据质量。

3.因果相关谬误

会误把相关当因果,忽略中介变量。比如,有人发现雪糕的销量和河溪溺死的儿童数量呈明显相关,就下令削减雪糕销量。其实可能只是因为这两者都是发生在天气炎热的夏天。天气炎热,购买雪糕的人就越多,而去河里游泳的人也显著增多。

4.辛普森悖论

简单来说,就是在两个相差较多的分组数据相加时,在分组比较中都占优势的一方,会在总评中反而是失势的一方。

5.个人认知谬误

主观臆断、经验当事实、个体当整体、特征当全貌、眼见当事实。

举个主观臆断的例子:某个产品A页面到B页面的转化率30%,直接判断为很低,推导出可以提高到75%。但实际类似产品或者用户行为决定页面的转化率就只有这么高,得出一个错误的结论。

标准至关重要,数据+标准=判断。有了判断才能深入分析。通过分组对比找标准(象限法、多维法、二八法、对比法),有标准通过分析对比,找到“好/坏”的点。

统计学规律和理论不会错,犯错的是使用它的人。因此,我们在进行数据分析时,一定要格外小心,错误的数据,披上科学的外衣,就很难分辨了。

以上。

●适婚农村青年找对象有多难?●品牌知名度分析

测试用例的分析

0.1功能测试流程:

(1)需求分析和评审

(2)测试计划

(3)测试用例

(4)测试用例评审

(5)执行用例

(6)缺陷跟踪及报告产出

0.2.等价类划分法:2.1等价类概念与分类#等价类在所有测试数据中,具有某种共同特征的数据子集即为等价类#等价类分类-有效等价类-无效等价类手机号有效等价类:11位数字17337677777无效等价类:11数字+字母1733767abcd12位数字173376777778小于11位173376777711位数字+特殊字符1733767_.772.2等价类划分法解决的问题#解决问题划分等价类可以将测试集合科学的无穷大减少到有限小,让测试工作从穷举测试中解放出来,大大减少测试用例数量,提升测试效率。2.3等价类划分法设计测试用例步骤与应用场景#步骤:1.需求分析2.划分等价类(1).有效等价类(2).无效等价类-规则(需求本身出发)-长度需求-类型规定-是否为空(不填项检查)-是否可重复输入3.设计用例QQ号等价类划分法:有效等价类:6-11位数字:无效等价类:无效等价类:小于6位的数字:大于11位的数字:6-11位数字+字符/字母不填写任何东西输入一个重复的QQ号2.5案例实战----新浪邮箱登录

03.边界值法3.1边界值法概念及存在的意义边界值法设计测试用例,是对输入或者输出的边界值(有效等价类和无效类的界限)进行测试的一种黑盒测试方法#2.边界执法存在的意义测试经验表明错误往往会发生在输入或者输出的范围边界上,所以边界值法是对这些边界进行测试,是对划分等价类法的一种补充。#边界值的概念(如下图)-上点:边界上的上点(符合条件的边界点)-内点:边界内的点-离点:离边界最近的左右俩点

3.2两位数加法计算器案例#需求:一个可以计算两位数内的加法计算器#确定边界值(如下图):两位数取值范围数学区间表示上点内点离店x>=-99,y-99,y=-99,y-99,y,=,result.txt更具生成的新文件编写测试用例(一行就是一条测试用例)#案例:假设有一个用户筛选功能,有三个输入分别时体型,年龄段,性别-体型:胖、适中、瘦-年龄段:老人,青年,儿童-性别:男,女请根据以上条件设计测试用例

4.3场景法:4.3.1场景法介绍#场景法介绍场景法就是模拟用户操作软件时的场景,主要用于测试多个功能之间的组合使用情况4.3.2场景法使用阶段与测试用例设计步骤#场景法适用的场景集成测试系统测试验收测试#设计测试用例的步骤需求分析绘制流程图设计测试用例(一条流程路径就是一条测试用例)4.3.3流程图的绘制

流程图小案例

#以购买商城的注册–>登录–>…–>订单为例#流程分析:注册登录浏览商品下单支付订单管理

4.4错误推测法

概念:利用经验或智慧发现程序可能犯错的地方

使用场景:

重要功能使用同类型的产品任务急,时间紧,资源少

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇