计算机方向的综述投稿哪个期刊,人工智能方向论文投稿期刊
人工智能方向论文投稿期刊
来源:职称阁时间:2019-10-2214:58热度:
人工智能方向论文投稿期刊有哪些呢?相关的人工智能类的刊物有很多的,期刊的选择对于论文发表来说是很关键的,论文只有在正规且合法的期刊投稿才可以用于评职称。但是也不是所有期刊都适合发表论文的,要选择符合论文内容类型的刊物投稿,接下来根据这个问题,详细的推荐几本期刊供大家参考:
《智能计算机与应用》本刊由哈尔滨工业大学主办,哈尔滨工业大学计算机科学与技术学院承办,本刊宗旨:坚持理论与实际结合,普及与提高结合,注重科学性、知识性、实用性,普及推广电脑知识,促进电脑应用水平不断地提高。这本刊物国际刊号是2095-2163,国内刊号是23-1573/TN,设有综述与探讨、学术交流、技术专题、技术报告、开发与应用、研究生论坛、技术产品介绍等栏目,有涉及到这方面内容的可以参考一下。
《模式识别与人工智能》创刊于1989年,是由中国自动化学会、国家智能计算机研究开发中心和中国科学院合肥智能机械研究所共同主办、科学出版社出版的学术性期刊。属于核心期刊,这本刊物国内刊号是34-1089/TP,国际刊号是1003-6059,设有论文与报告、综述与评论、研究与应用、信息与动态等栏目。
以上是针对人工智能方向论文投稿期刊有哪些的内容介绍,仅供相关人士参考,如果以上期刊不在您投稿期刊选择范围内,可以通过在线咨询窗口联系编辑,在线为您推荐并安排人工智能论文发表。
本文由职称阁首发,权威专业的职称论文发表网。
人工智能方向论文投稿期刊相关论文:
发表职称论文正规期刊推荐:
知识图谱选哪些方向好发论文附60+篇经典论文合集
0分享至导读:知识图谱的概念是Google于2012年正式提出,但是知识图谱的发展却可以追溯到1960年的语义网络。1984DouglasLenat设立的Cyc是本体知识库。1989TimBerners-Lee发明了万维网。1998TimBerners-Lee再次提出语义网,语义网是能够根据语义进行判断的智能网络,实现人与电脑之间的无障碍沟通。它好比一个巨型的大脑,智能化程度极高,协调能力非常强大。2006TimBerners-Lee提出链接数据(LinkedData)的概念,数据不仅仅发布于语义网中,而要建立起数据之间的链接从而形成一张巨大的链接数据网。2007DBpedia项目是目前已知的第一个大规模开放域链接数据。2012Google提出了知识图谱的概念。知识图谱大体可以分为三个方向,分别为知识表示、知识获取和知识应用,也有把时序知识单独分成一类的。而在不同的方向中,又有很多细分的方向,如知识表示建模、实体识别、实体链接、关系抽取、事件抽取、信息抽取、知识表示、知识融合、知识推理、知识图谱嵌入等等。由于方向很多,想发表知识图谱相关的论文常常无从下手,那么知识图谱现在选择哪个方向好发论文呢?
近期随着深度学习模型的发展,特别是基于Bert的预训练模型的发展,知识作为先验信息在自然语言理解中起着重要的作用,将知识图谱通过某种方式融入到预训练模型中,进而可以获得效果上的提升。在预训练模型上引入知识的工作如ERNIE,K-BERT,KEPLER等,通过在已有模型中加入entityembedding输入或者objectivefunction约束来引入知识。虽然知识图谱的相关技术发展很快,但在自然语言处理、人工智能等领域展现巨大潜力的同时,知识图谱在知识获取、知识表示、知识推理等技术依然面临着一些困难与挑战,很多重要的开放问题急待学术界与工业界协力来解决。相应也会有一些研究热点,如:1️⃣以马尔可夫逻辑网、本体推理的联合推理方法;2️⃣知识图谱与预训练模型的融合;3️⃣跨语言的知识抽取方法;4️⃣基于实体的、关系的、Web文本的、多知识库的融合方法;5️⃣多模态知识图谱技术;6️⃣图神经网络进行知识嵌入;7️⃣强化学习与知识图谱的结合使用(图谱推理、实体对齐);8️⃣增量更新技术在知识图谱上的应用等等。以上研究热点均可作为尝试发表论文的方向(tips:文末有参考论文)。对于发论文没有想法的同学可以参考以上热点进行创作,如果到这个节点还是无法解决论文问题的同学,建议大家可以参加一下七月在线的【AI学术论文一对一发表辅导】,一对一管家式服务,全程辅导,围绕“国内期刊、EI会议/ei期刊、SCI四区到SCl一区/CCFABC三类、AI各顶会”做全程辅导,包括且不限于课题确定、创作、修改、投递、发布等等,从而在导师辅导下学员独立自主创作至成功发表;且老师都是国内外知名高校博士毕业且具备强大学术背景的师资团队,针对不同群体不同的诉求提供整体解决方案。同时在学员在发表第一篇的过程中,让学员掌握—套成体系的论文发表方法/策略/流程,为后续成为会议/paper收割机打下坚实基础。详情请扫码(或七月在线任一老师)加课程顾问咨询为你匹配专属的论文辅导1V1方案长按扫码,给自己的人生开个挂目前,大规模知识图谱的应用场景和方式还比较有限,其在智能搜索、深度问答、社交网络以及其他行业中的使用也只是处于初级阶段,仍具有广阔的可扩展空间。在挖掘需求、探索知识图谱的应用场景时,应充分考虑知识图谱的以下优势:1)对海量、异构、动态的半结构化、非结构化数据的有效组织与表达能力;2)依托于强大知识库的深度知识推理能力;3)与深度学习、类脑科学等领域相结合,逐步扩展的认知能力。在对知识图谱技术有丰富积累的基础上,敏锐的感知人们的需求,结合具体的业务,可为大规模知识图谱的应用找到更宽广、更合适的应用之道。下面给出知识图谱一些方向的论文参考:01知识图谱构建►DongX,GabrilovichE,HeitzG,etal.Knowledgevault:Aweb-scaleapproachtoprobabilisticknowledgefusion.KDD2014:601-610.►SuchanekFM,KasneciG,WeikumG.Yago:acoreofsemanticknowledge.WWW2007:697-706.►HoffartJ,SuchanekFM,BerberichK,etal.YAGO2:AspatiallyandtemporallyenhancedknowledgebasefromWikipedia.ArtificialIntelligence,2013,194:28-61.02关系抽取►LiuCY,SunWB,ChaoWH,etal.Convolutionneuralnetworkforrelationextraction[C]//InternationalConferenceonAdvancedDataMiningandApplications.Springer,Berlin,Heidelberg,2013:231-242.►ZengD,LiuK,LaiS,etal.Relationclassificationviaconvolutionaldeepneuralnetwork[J].2014.►Santos,CiceroNogueirados,BingXiang,andBowenZhou.“Classifyingrelationsbyrankingwithconvolutionalneuralnetworks.”InProceedingsofACL,2015.03事件抽取►ChenY,XuL,LiuK,etal.Eventextractionviadynamicmulti-poolingconvolutionalneuralnetworks.ACL2015,1:167-176.►NguyenTH,GrishmanR.Eventdetectionanddomainadaptationwithconvolutionalneuralnetworks.ACL2015,2:365-371.►NarasimhanK,YalaA,BarzilayR.Improvinginformationextractionbyacquiringexternalevidencewithreinforcementlearning.EMNLP2016.►NguyenTH,ChoK,GrishmanR.Jointeventextractionviarecurrentneuralnetworks.NAACL2016:300-309.04知识融合►PapadakisG,IoannouE,PalpanasT,etal.Ablockingframeworkforentityresolutioninhighlyheterogeneousinformationspaces.IEEETransactionsonKnowledgeandDataEngineering,2013,25(12):2665-2682.►ZhangY,ZhangF,YaoP,etal.NameDisambiguationinAMiner:Clustering,Maintenance,andHumanintheLoop.KDD2018:1002-1011.►NgomoACN,AuerS.LIMES—atime-efficientapproachforlarge-scalelinkdiscoveryonthewebofdata.IJCAI2011.05知识图谱嵌入►YangB,YihW,HeX,etal.Embeddingentitiesandrelationsforlearningandinferenceinknowledgebases.arXivpreprintarXiv:1412.6575,2014.(DistMult)►NickelM,RosascoL,PoggioT.Holographicembeddingsofknowledgegraphs.AAAI.2016.(HolE)►TrouillonT,WelblJ,RiedelS,etal.Complexembeddingsforsimplelinkprediction.InternationalConferenceonMachineLearning.2016:2071-2080.(ComplEx)►LiuH,WuY,YangY.Analogicalinferenceformulti-relationalembeddings.Proceedingsofthe34thInternationalConferenceonMachineLearning-Volume70.JMLR.org,2017:2168-2178.(ANALOGY)06知识推理/知识挖掘►PTransE:SunM,ZhuH,XieR,etal.IterativeEntityAlignmentviaJointKnowledgeEmbeddings[C]//InternationalJointConferenceonArtificialIntelligence.AAAIPress,2017.►ShenY,HuangPS,ChangMW,etal.ModelingLarge-ScaleStructuredRelationshipswithSharedMemoryforKnowledgeBaseCompletion[J].2016.►GravesA,WayneG,ReynoldsM,etal.Hybridcomputingusinganeuralnetworkwithdynamicexternalmemory[J].Nature.►YangF,YangZ,CohenWW.DifferentiableLearningofLogicalRulesforKnowledgeBaseReasoning[J].2017.07实体识别(ACL)►LinY,YangS,StoyanovV,etal.Amulti-lingualmulti-taskarchitectureforlow-resourcesequencelabeling.Proceedingsofthe56thAnnualMeetingoftheAssociationforComputationalLinguistics(Volume1:LongPapers).2018,1:799-809.►XuH,LiuB,ShuL,etal.Doubleembeddingsandcnn-basedsequencelabelingforaspectextraction.arXivpreprintarXiv:1805.04601,2018.►YeZX,LingZH.Hybridsemi-markovcrfforneuralsequencelabeling.arXivpreprintarXiv:1805.03838,2018.►YangJ,ZhangY.Ncrf++:Anopen-sourceneuralsequencelabelingtoolkit.arXivpreprintarXiv:1806.05626,2018.08实体识别(NAACL)►JuM,MiwaM,AnaniadouS.Aneurallayeredmodelfornestednamedentityrecognition.Proceedingsofthe2018ConferenceoftheNorthAmericanChapteroftheAssociationforComputationalLinguistics:HumanLanguageTechnologies,Volume1(LongPapers).2018,1:1446-1459.►WangZ,QuY,ChenL,etal.Label-awaredoubletransferlearningforcross-specialtymedicalnamedentityrecognition.NAACL2018.►MoonS,NevesL,CarvalhoV.Multimodalnamedentityrecognitionforshortsocial../mediaposts.NAACL2018.►KatiyarA,CardieC.Nestednamedentityrecognitionrevisited.NAACL2018:861-871.09实体识别(EMNLP)►CaoP,ChenY,LiuK,etal.AdversarialTransferLearningforChineseNamedEntityRecognitionwithSelf-AttentionMechanism.EMNLP2018:182-192.►XieJ,YangZ,NeubigG,etal.Neuralcross-lingualnamedentityrecognitionwithminimalresources.EMNLP2018.►LinBY,LuW.Neuraladaptationlayersforcross-domainnamedentityrecognition.EMNLP2018.►ShangJ,LiuL,RenX,etal.LearningNamedEntityTaggerusingDomain-SpecificDictionary.EMNLP2018.10实体识别(COLING)►MaiK,PhamTH,NguyenMT,etal.Anempiricalstudyonfine-grainednamedentityrecognition.Proceedingsofthe27thInternationalConferenceonComputationalLinguistics.2018:711-722.►NageshA,SurdeanuM.AnExplorationofThreeLightly-supervisedRepresentationLearningApproachesforNamedEntityClassification.Proceedingsofthe27thInternationalConferenceonComputationalLinguistics.2018:2312-2324.11事件抽取(ACL)►ChoubeyPK,HuangR.ImprovingEventCoreferenceResolutionbyModelingCorrelationsbetweenEventCoreferenceChainsandDocumentTopicStructures.Proceedingsofthe56thAnnualMeetingoftheAssociationforComputationalLinguistics(Volume1:LongPapers).2018,1:485-495.►HuangL,JiH,ChoK,etal.Zero-shottransferlearningforeventextraction.ACL2017.►HongY,ZhouW,ZhangJ,etal.Self-regulation:EmployingaGenerativeAdversarialNetworktoImproveEventDetection.Proceedingsofthe56thAnnualMeetingoftheAssociationforComputationalLinguistics(Volume1:LongPapers).2018,1:515-526.12事件抽取(NAACL)►FergusonJ,LockardC,WeldDS,etal.Semi-SupervisedEventExtractionwithParaphraseClusters.ACL2018.13事件抽取(EMNLP)►OrrJW,TadepalliP,FernX.EventDetectionwithNeuralNetworks:ARigorousEmpiricalEvaluation.EMNLP2018.►LiuS,ChengR,YuX,etal.ExploitingContextualInformationviaDynamicMemoryNetworkforEventDetection.EMNLP2018.►LiuX,LuoZ,HuangH.Jointlymultipleeventsextractionviaattention-basedgraphinformationaggregation.EMNLP2018.►ChenY,YangH,LiuK,etal.CollectiveEventDetectionviaaHierarchicalandBiasTaggingNetworkswithGatedMulti-levelAttentionMechanisms.EMNLP2018:1267-1276.14事件抽取(COLING)►ArakiJ,MitamuraT.Open-DomainEventDetectionusingDistantSupervision.Proceedingsofthe27thInternationalConferenceonComputationalLinguistics.2018:878-891.►MuisAO,OtaniN,VyasN,etal.Low-resourceCross-lingualEventTypeDetectionviaDistantSupervisionwithMinimalEffort.Proceedingsofthe27thInternationalConferenceonComputationalLinguistics.2018:70-82.►KazeminejadG,BonialC,BrownSW,etal.AutomaticallyExtractingQualiaRelationsfortheRichEventOntology.Proceedingsofthe27thInternationalConferenceonComputationalLinguistics.2018:2644-2652.15关系抽取►FengJ,HuangM,ZhaoL,etal.Reinforcementlearningforrelationclassificationfromnoisydata,AAAI2018.►HeZ,ChenW,LiZ,etal.SEE:Syntax-awareentityembeddingforneuralrelationextraction,AAAI2018.►VashishthS,JoshiR,PrayagaSS,etal.RESIDE:ImprovingDistantly-SpervisedNeuralRelationExtractionusingSideInformation.ACL2018.►TanZ,ZhaoX,WangW,etal.JointlyExtractingMultipleTripletswithMultilayerTranslationConstraints.AAAI2018.►RyuichiTakanobu,TianyangZhang,JieXiLiu,MinlieHuangAHierarchicalFrameworkforRelationExtractionwithReinforcementLearning,AAAI2019.16知识存储►ZhangX,ZhangM,PengP,etal.AScalableSparseMatrix-BasedJoinforSPARQLQueryProcessing[C]//InternationalConferenceonDatabaseSystemsforAdvancedApplications.Springer,Cham,2019:510-514.►LibkinL,ReutterJL,SotoA,etal.TriAL:AnavigationalalgebraforRDFtriplestores[J].ACMTransactionsonDatabaseSystems(TODS),2018,43(1):5.►ElzeinNM,MajidMA,HashemIAT,etal.ManagingbigRDFdatainclouds:Challenges,opportunities,andsolutions[J].SustainableCitiesandSociety,2018,39:375-386.17知识推理►Zhang,Y.,Dai,H.,Kozareva,Z.,Smola,A.J.,&Song,L.(2018,April).Variationalreasoningforquestionansweringwithknowledgegraph.InThirty-SecondAAAIConferenceonArtificialIntelligence.►Trivedi,R.,Dai,H.,Wang,Y.,&Song,L.(2017,August).Know-evolve:Deeptemporalreasoningfordynamicknowledgegraphs.InProceedingsofthe34thInternationalConferenceonMachineLearning-Volume70(pp.3462-3471).JMLR.org.►Hamilton,W.,Bajaj,P.,Zitnik,M.,Jurafsky,D.,&Leskovec,J.(2018).Embeddinglogicalqueriesonknowledgegraphs.InAdvancesinNeuralInformationProcessingSystems(pp.2026-2037).18实体链接►Sil,A.,Kundu,G.,Florian,R.,&Hamza,W.(2018,April).Neuralcross-lingualentitylinking.InThirty-SecondAAAIConferenceonArtificialIntelligence.►Chen,H.,Wei,B.,Liu,Y.,Li,Y.,Yu,J.,&Zhu,W.(2018).BilinearjointlearningofwordandentityembeddingsforEntityLinking.Neurocomputing,294,12-18.►Raiman,J.R.,&Raiman,O.M.(2018,April).DeepType:multilingualentitylinkingbyneuraltypesystemevolution.InThirty-SecondAAAIConferenceonArtificialIntelligence.►Kundu,G.,Sil,A.,Florian,R.,&Hamza,W.(2018).Neuralcross-lingualcoreferenceresolutionanditsapplicationtoentitylinking.arXivpreprintarXiv:1806.10201.如果说要写出一篇毕业论文要靠自己平时的知识积累,那么想写出一篇优秀的学术论文就离不开老师的专业指导和不断的修改完善。为此,七月在线特别推出【AI学术论文一对一辅导】名师全程辅导EI/ei/SCI/各顶会,帮助你解决论文写作发表难题!详情请扫码(或七月在线任一老师)加课程顾问咨询为你匹配专属的论文辅导1V1方案长按扫码,给自己的人生开个挂特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端