博舍

什么是机器学习机器学习能解决什么问题(案例分析) 人工智能解决人的什么问题最重要

什么是机器学习机器学习能解决什么问题(案例分析)

随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工业界对机器学习的研究各有侧重,学术界侧重于对机器学习理论的研究,工业界侧重于如何用机器学习来解决实际问题。我们结合美团在机器学习上的实践,进行一个实战(InAction)系列的介绍(带“机器学习InAction系列”标签的文章),介绍机器学习在解决工业界问题的实战中所需的基本技术、经验和技巧。本文主要结合实际问题,概要地介绍机器学习解决实际问题的整个流程,包括对问题建模、准备训练数据、抽取特征、训练模型和优化模型等关键环节;另外几篇则会对这些关键环节进行更深入地介绍。

下文分为1)机器学习的概述,2)对问题建模,3)准备训练数据,4)抽取特征,5)训练模型,6)优化模型,7)总结共7个章节进行介绍。

机器学习的概述:什么是机器学习?

随着机器学习在实际工业领域中不断获得应用,这个词已经被赋予了各种不同含义。在本文中的“机器学习”含义与wikipedia上的解释比较契合,如下:Machinelearningisascientificdisciplinethatdealswiththeconstructionandstudyofalgorithmsthatcanlearnfromdata.

机器学习可以分为无监督学习(unsupervisedlearning)和有监督学习(supervisedlearning),在工业界中,有监督学习是更常见和更有价值的方式,下文中主要以这种方式展开介绍。如下图中所示,有监督的机器学习在解决实际问题时,有两个流程,一个是离线训练流程(蓝色箭头),包含数据筛选和清洗、特征抽娶模型训练和优化模型等环节;另一个流程则是应用流程(绿色箭头),对需要预估的数据,抽取特征,应用离线训练得到的模型进行预估,获得预估值作用在实际产品中。在这两个流程中,离线训练是最有技术挑战的工作(在线预估流程很多工作可以复用离线训练流程的工作),所以下文主要介绍离线训练流程。

什么是模型(model)?

模型,是机器学习中的一个重要概念,简单的讲,指特征空间到输出空间的映射;一般由模型的假设函数和参数w组成(下面公式就是LogisticRegression模型的一种表达,在训练模型的章节做稍详细的解释);一个模型的假设空间(hypothesisspace),指给定模型所有可能w对应的输出空间组成的集合。工业界常用的模型有LogisticRegression(简称LR)、GradientBoostingDecisionTree(简称GBDT)、SupportVectorMachine(简称SVM)、DeepNeuralNetwork(简称DNN)等。

模型训练就是基于训练数据,获得一组参数w,使得特定目标最优,即获得了特征空间到输出空间的最优映射,具体怎么实现,见训练模型章节。

为什么要用机器学习解决问题?

目前处于大数据时代,到处都有成T成P的数据,简单规则处理难以发挥这些数据的价值;

廉价的高性能计算,使得基于大规模数据的学习时间和代价降低;

廉价的大规模存储,使得能够更快地和代价更小地处理大规模数据;

存在大量高价值的问题,使得花大量精力用机器学习解决问题后,能获得丰厚收益。

机器学习应该用于解决什么问题?

目标问题需要价值巨大,因为机器学习解决问题有一定的代价;

目标问题有大量数据可用,有大量数据才能使机器学习比较好地解决问题(相对于简单规则或人工);

目标问题由多种因素(特征)决定,机器学习解决问题的优势才能体现(相对于简单规则或人工);

目标问题需要持续优化,因为机器学习可以基于数据自我学习和迭代,持续地发挥价值。

对问题建模

本文以DEAL(团购单)交易额预估问题为例(就是预估一个给定DEAL一段时间内卖了多少钱),介绍使用机器学习如何解决问题。首先需要:

收集问题的资料,理解问题,成为这个问题的专家;

拆解问题,简化问题,将问题转化机器可预估的问题。

深入理解和分析DEAL交易额后,可以将它分解为如下图的几个问题:

单个模型?多个模型?如何来选择?

按照上图进行拆解后,预估DEAL交易额就有2种可能模式,一种是直接预估交易额;另一种是预估各子问题,如建立一个用户数模型和建立一个访购率模型(访问这个DEAL的用户会购买的单子数),再基于这些子问题的预估值计算交易额。

不同方式有不同优缺点,具体如下:

模式缺点优点单模型 1.预估难度大2.风险比较高 1.理论上可以获得最优预估(实际上很难)2.一次解决问题 多模型 1.可能产生积累误差2.训练和应用成本高 1.单个子模型更容易实现比较准地预估2.可以调整子模型的融合方式,以达到最佳效果 

选择哪种模式?

1)问题可预估的难度,难度大,则考虑用多模型;

2)问题本身的重要性,问题很重要,则考虑用多模型;

3)多个模型的关系是否明确,关系明确,则可以用多模型。

如果采用多模型,如何融合?可以根据问题的特点和要求进行线性融合,或进行复杂的融合。以本文问题为例,至少可以有如下两种:

模型选择

对于DEAL交易额这个问题,我们认为直接预估难度很大,希望拆成子问题进行预估,即多模型模式。那样就需要建立用户数模型和访购率模型,因为机器学习解决问题的方式类似,下文只以访购率模型为例。要解决访购率问题,首先要选择模型,我们有如下的一些考虑:

主要考虑

1)选择与业务目标一致的模型;

2)选择与训练数据和特征相符的模型。

训练数据少,HighLevel特征多,则使用“复杂”的非线性模型(流行的GBDT、RandomForest等);训练数据很大量,LowLevel特征多,则使用“简单”的线性模型(流行的LR、Linear-SVM等)。

补充考虑

1)当前模型是否被工业界广泛使用;

2)当前模型是否有比较成熟的开源工具包(公司内或公司外);

3)当前工具包能够的处理数据量能否满足要求;

4)自己对当前模型理论是否了解,是否之前用过该模型解决问题。

为实际问题选择模型,需要转化问题的业务目标为模型评价目标,转化模型评价目标为模型优化目标;根据业务的不同目标,选择合适的模型,具体关系如下:

通常来讲,预估真实数值(回归)、大小顺序(排序)、目标所在的正确区间(分类)的难度从大到小,根据应用所需,尽可能选择难度小的目标进行。对于访购率预估的应用目标来说,我们至少需要知道大小顺序或真实数值,所以我们可以选择AreaUnderCurve(AUC)或MeanAbsoluteError(MAE)作为评估目标,以Maximumlikelihood为模型损失函数(即优化目标)。综上所述,我们选择spark版本GBDT或LR,主要基于如下考虑:

1)可以解决排序或回归问题;

2)我们自己实现了算法,经常使用,效果很好;

3)支持海量数据;

4)工业界广泛使用。

准备训练数据

深入理解问题,针对问题选择了相应的模型后,接下来则需要准备数据;数据是机器学习解决问题的根本,数据选择不对,则问题不可能被解决,所以准备训练数据需要格外的小心和注意:

注意点:

待解决问题的数据本身的分布尽量一致;

训练集/测试集分布与线上预测环境的数据分布尽可能一致,这里的分布是指(x,y)的分布,不仅仅是y的分布;

y数据噪音尽可能小,尽量剔除y有噪音的数据;

非必要不做采样,采样常常可能使实际数据分布发生变化,但是如果数据太大无法训练或者正负比例严重失调(如超过100:1),则需要采样解决。

常见问题及解决办法

待解决问题的数据分布不一致:

1)访购率问题中DEAL数据可能差异很大,如美食DEAL和酒店DEAL的影响因素或表现很不一致,需要做特别处理;要么对数据提前归一化,要么将分布不一致因素作为特征,要么对各类别DEAL单独训练模型。

数据分布变化了:

1)用半年前的数据训练模型,用来预测当前数据,因为数据分布随着时间可能变化了,效果可能很差。尽量用近期的数据训练,来预测当前数据,历史的数据可以做降权用到模型,或做transferlearning。

y数据有噪音:

1)在建立CTR模型时,将用户没有看到的Item作为负例,这些Item是因为用户没有看到才没有被点击,不一定是用户不喜欢而没有被点击,所以这些Item是有噪音的。可以采用一些简单规则,剔除这些噪音负例,如采用skip-above思想,即用户点过的Item之上,没有点过的Item作为负例(假设用户是从上往下浏览Item)。

采样方法有偏,没有覆盖整个集合:

1)访购率问题中,如果只取只有一个门店的DEAL进行预估,则对于多门店的DEAL无法很好预估。应该保证一个门店的和多个门店的DEAL数据都有;

2)无客观数据的二分类问题,用规则来获得正/负例,规则对正/负例的覆盖不全面。应该随机抽样数据,进行人工标注,以确保抽样数据和实际数据分布一致。

访购率问题的训练数据

收集N个月的DEAL数据(x)及相应访购率(y);

收集最近N个月,剔除节假日等非常规时间(保持分布一致);

只收集在线时长>T且访问用户数>U的DEAL(减少y的噪音);

考虑DEAL销量生命周期(保持分布一致);

考虑不同城市、不同商圈、不同品类的差别(保持分布一致)。

抽取特征

完成数据筛选和清洗后,就需要对数据抽取特征,就是完成输入空间到特征空间的转换(见下图)。针对线性模型或非线性模型需要进行不同特征抽取,线性模型需要更多特征抽取工作和技巧,而非线性模型对特征抽取要求相对较低。

通常,特征可以分为HighLevel与LowLevel,HighLevel指含义比较泛的特征,LowLevel指含义比较特定的特征,举例来说:

DEALA1属于POIA,人均50以下,访购率高;DEALA2属于POIA,人均50以上,访购率高;DEALB1属于POIB,人均50以下,访购率高;DEALB2属于POIB,人均50以上,访购率底;

基于上面的数据,可以抽到两种特征,POI(门店)或人均消费;POI特征则是LowLevel特征,人均消费则是HighLevel特征;假设模型通过学习,获得如下预估:

如果DEALx属于POIA(LowLevelfeature),访购率高;如果DEALx人均50以下(HighLevelfeature),访购率高。

所以,总体上,LowLevel比较有针对性,单个特征覆盖面小(含有这个特征的数据不多),特征数量(维度)很大。HighLevel比较泛化,单个特征覆盖面大(含有这个特征的数据很多),特征数量(维度)不大。长尾样本的预测值主要受HighLevel特征影响。高频样本的预测值主要受LowLevel特征影响。

对于访购率问题,有大量的HighLevel或LowLevel的特征,其中一些展示在下图:

非线性模型的特征

1)可以主要使用HighLevel特征,因为计算复杂度大,所以特征维度不宜太高;

2)通过HighLevel非线性映射可以比较好地拟合目标。

线性模型的特征

1)特征体系要尽可能全面,HighLevel和LowLevel都要有;

2)可以将HighLevel转换LowLevel,以提升模型的拟合能力。

特征归一化

特征抽取后,如果不同特征的取值范围相差很大,最好对特征进行归一化,以取得更好的效果,常见的归一化方式如下:

Rescaling:

归一化到[0,1]或[-1,1],用类似方式:

Standardization:

设为x分布的均值,

为x分布的标准差;

Scalingtounitlength:

归一化到单位长度向量

特征选择

特征抽取和归一化之后,如果发现特征太多,导致模型无法训练,或很容易导致模型过拟合,则需要对特征进行选择,挑选有价值的特征。

Filter:假设特征子集对模型预估的影响互相独立,选择一个特征子集,分析该子集和数据Label的关系,如果存在某种正相关,则认为该特征子集有效。衡量特征子集和数据Label关系的算法有很多,如Chi-square,InformationGain。

Wrapper:选择一个特征子集加入原有特征集合,用模型进行训练,比较子集加入前后的效果,如果效果变好,则认为该特征子集有效,否则认为无效。

Embedded:将特征选择和模型训练结合起来,如在损失函数中加入L1Norm,L2Norm。

训练模型

完成特征抽取和处理后,就可以开始模型训练了,下文以简单且常用的LogisticRegression模型(下称LR模型)为例,进行简单介绍。

设有m个(x,y)训练数据,其中x为特征向量,y为label,;w为模型中参数向量,即模型训练中需要学习的对象。

所谓训练模型,就是选定假说函数和损失函数,基于已有训练数据(x,y),不断调整w,使得损失函数最优,相应的w就是最终学习结果,也就得到相应的模型。

模型函数1)假说函数,即假设x和y存在一种函数关系:

2)损失函数,基于上述假设函数,构建模型损失函数(优化目标),在LR中通常以(x,y)的最大似然估计为目标:

优化算法

梯度下降(GradientDescent)

即w沿着损失函数的负梯度方向进行调整,示意图见下图,

的梯度即一阶导数(见下式),梯度下降有多种类型,如随机梯度下降或批量梯度下降。

随机梯度下降(StochasticGradientDescent),每一步随机选择一个样本

,计算相应的梯度,并完成w的更新,如下式,

批量梯度下降(BatchGradientDescent),每一步都计算训练数据中的所有样本对应的梯度,w沿着这个梯度方向迭代,即

牛顿法(Newton’sMethod)

牛顿法的基本思想是在极小点附近通过对目标函数做二阶Taylor展开,进而找到L(w)的极小点的估计值。形象地讲,在wk处做切线,该切线与L(w)=0的交点即为下一个迭代点wk+1(示意图如下)。w的更新公式如下,其中目标函数的二阶偏导数,即为大名鼎鼎的Hessian矩阵。

拟牛顿法(Quasi-NewtonMethods):计算目标函数的二阶偏导数,难度较大,更为复杂的是目标函数的Hessian矩阵无法保持正定;不用二阶偏导数而构造出可以近似Hessian矩阵的逆的正定对称阵,从而在"拟牛顿"的条件下优化目标函数。

BFGS:使用BFGS公式对H(w)进行近似,内存中需要放H(w),内存需要O(m2)级别;

L-BFGS:存储有限次数(如k次)的更新矩阵

,用这些更新矩阵生成新的H(w),内存降至O(m)级别;

OWLQN:如果在目标函数中引入L1正则化,需要引入虚梯度来解决目标函数不可导问题,OWLQN就是用来解决这个问题。

CoordinateDescent

对于w,每次迭代,固定其他维度不变,只对其一个维度进行搜索,确定最优下降方向(示意图如下),公式表达如下:

优化模型

经过上文提到的数据筛选和清洗、特征设计和选择、模型训练,就得到了一个模型,但是如果发现效果不好?怎么办?

【首先】

反思目标是否可预估,数据和特征是否存在bug。

【然后】

分析一下模型是Overfitting还是Underfitting,从数据、特征和模型等环节做针对性优化。

Underfitting&Overfitting

人工智能的伦理挑战与科学应对

  【光明青年论坛】 

编者按

  2023年2月21日,中国外交部正式发布《全球安全倡议概念文件》,呼吁“加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险”。在中国式现代化进程中,人工智能的技术革新是助推我国科技创新的重要力量之一。作为最具代表性的颠覆性技术,人工智能在给人类社会带来潜在巨大发展红利的同时,其不确定性也会带来诸多全球性挑战,引发重大的伦理关切。习近平总书记高度关注人工智能等新兴科技的发展,强调要加快提升“人工智能安全等领域的治理能力”,“塑造科技向善的文化理念,让科技更好增进人类福祉”。为此,本版特组织几位青年学者围绕人工智能的伦理挑战与科学应对展开讨论,并邀请专家予以点评,以期引发学界的更多关注,为推动人工智能健康发展贡献智慧。

  与谈人

  彭家锋 中国人民大学哲学院博士生

  虞昊 华东师范大学政治与国际关系学院博士生

  邓玉龙 南京师范大学哲学系博士生

  主持人

  刘永谋 中国人民大学哲学院教授、国家发展与战略研究院研究员

1.机遇与挑战并存的人工智能

  主持人:新技术革命方兴未艾,以人工智能等为代表的新兴科技快速发展,大大拓展了时间、空间和人们的认知范围,人类正在进入一个“人机物”相融合的万物智能互联时代。请具体谈谈人工智能给人类社会发展带来什么样的机遇?

  彭家锋:人工智能、大数据、物联网、云计算等智能技术蓬勃兴起,对人类社会的方方面面产生深刻影响,推动整个社会逐步迈入智能社会。在此过程中,存在许多重大历史机遇需要我们把握。就技术治理而言,人工智能作为一种治理技术,正在助推社会治理的治理理念、治理方式、治理效能等方面的变革,将传统技术治理提升至智能化新阶段,呈现出“智能治理的综合”趋势。智能治理将全面提升社会公共治理的智能化水平,主要呈现出四个方面的特征:一是治理融合化,即促进各种智能技术与其他治理技术相互融合,大幅度提升智能社会的治理水平;二是治理数据化,即以日益增长的海量数据为基础,通过对数据映射出来的“数字世界”进行社会计算,实现治理目标;三是治理精准化,即发挥智能技术强大的感知能力、传输能力和计算能力,将传统的粗放治理转变为精准治理;四是治理算法化,即不断完善智能决策系统,尝试将程序化的算法决策扩展到更多的决策活动中,从而提高决策质量。

  虞昊:人工智能有助于反思人类社会得以建立与发展的基础。随着分析式AI向着生成式AI不断演变,尤其是生成式AI初步展现出判别问题、分析情感、展开对话、创作内容等越来越具有人类特征的功能,原本属于人类的领域正被人工智能以另一套由“0”与“1”构成的计算机语言逐步侵蚀。这既是对人类社会的冲击,也势必会在更加平等的开放性框架中增强人类的主体性,促进人类社会进一步发展。

  邓玉龙:总体来说,以人工智能为代表的新科技发展,显著提升了社会生产力。例如,生成式AI不但能完成传统AI的分析、判断工作,还能进一步学习并完成分析式AI无法从事的创造性工作。从人机交互的角度来看,人工智能也促进了生产关系的高效发展。具体表现在:一是刺激劳动形态的转化。人工智能高效承担大量的基础机械性劳动,人类劳动则向高阶的创造性劳动转化,由此引发社会层面的劳动结构转型、升级,并且以人工智能为中介,社会范围内的劳动整合、协调能力也实现升级。二是促进劳动场域的重构。随着劳动形态的转化和劳动的社会化扩展,人工智能将劳动从固定场域中解放出来,人类劳动的灵活性增加。相比于创造性劳动,机械性劳动更加受到空间和时间的制约,而在人工智能从技术层面替代更低边际成本的基础性劳动之后,人类劳动空间和时间的自由性实现跃迁。三是对主体的发展提出了更高要求,尤其是对主体适应社会发展提出了更高要求。人工智能技术的发展对人类传统的知识结构提出挑战,要求人类更新原有的知识结构以适应社会发展需要,也对教育提出更高要求,教育模式和教育内容需要更契合科技发展的水平,培养更加全面发展的人才。

  主持人:人工智能的一系列产物在给人们带来生活便利的同时,也一定程度上引起大家对其可能引发的伦理挑战的警惕。一些人关注人工智能的风险问题,对人工智能的推进有些焦虑。如何看待这种警惕和焦虑?

  虞昊:人工智能的风险以及由此带来的焦虑,是完全可以理解的。但我们无法返回一个没有人工智能的世界,人工智能已然深度介入人类社会,试图遏制人工智能的推进只能是螳臂当车。同时我们对人工智能的发展也不能放任不管,无视甚至于压制人工智能的推进只能是掩耳盗铃。因此,我们应该正视这种焦虑,在发展人工智能的过程中探求解决方案,在人工智能带来的风险中寻求危中之机。

  邓玉龙:我们应正确看待这种焦虑。要看到,焦虑有其积极的意义,它体现人类的忧患意识,催生对人工智能风险的预见性思考,提醒我们注意焦虑背后人工智能技术发展存在的问题。正确对待焦虑有助于积极采取措施防范风险,辩证分析焦虑中先见性的思考,通过社会治理模式的升级化解风险问题。同时,仅有焦虑和恐惧是不够的,更重要的是积极解决人工智能发展带来的社会问题。从劳动的角度看,人工智能确实会取代部分人类劳动,推动劳动结构转型升级,让劳动向着碎片化、个体化方向发展,劳动者处于弱势地位,面临着“机器换人”的挑战。但是我们也应该理性认识到,人工智能不是对人类劳动能力的完全替代,而是对劳动者提出了更高的要求,要求劳动者掌握科学知识,将技术的发展内化为自身能力,在更具创造性的劳动中实现自身价值。

  彭家锋:任何技术的发明使用,不可避免地伴随着这样或那样的风险。人工智能技术自然也不例外,在其应用过程中,同样引发了诸如隐私泄露、算法歧视、法律责任等风险问题。因此,关注人工智能的风险问题,并由此对人工智能的推进产生焦虑,具有一定理论依据和现实基础。但更应当清醒地认识到,人工智能的某些相关风险可以提前得到规避,并不必然会发生;即便真的发生,也仍可不断寻求化解风险的有效手段。以个人隐私滥用风险为例,在治理过程中,虽然不可避免地会涉及个人数据收集和分析处理,但可以通过建立完整的规范和监管体系来保护个人隐私,降低滥用风险。

2.人工智能科技竞争的“伦理赛道”

  主持人:习近平总书记在以视频方式出席二十国集团领导人第十五次峰会时指出,“中方支持围绕人工智能加强对话,倡议适时召开专题会议,推动落实二十国集团人工智能原则,引领全球人工智能健康发展”。请谈谈“人工智能原则”应包含哪些内容?科技向善的文化理念对推动全球人工智能健康发展具有怎样的现实价值?

  彭家锋:为应对人工智能等新科技快速发展带来的伦理挑战,2022年,中共中央办公厅、国务院办公厅印发了《关于加强科技伦理治理的意见》,其中明确了“增进人类福祉”“尊重生命权利”“坚持公平公正”“合理控制风险”“保持公开透明”等五项科技伦理原则。我认为,这五项原则基本涵盖了人工智能原则的伦理要求,彰显了科技向善的文化理念。科技向善的文化理念,根本目标是让科技发展更好地服务社会和人民,带来良好社会或社会公益的善。科技向善对推动全球人工智能健康发展至少具有以下三个方面现实价值:一是塑造公众信任。公众对人工智能的信任很大程度上并不完全由相关风险程度决定,而是取决于公众的利益与价值是否得到足够重视。后者正是科技向善的内在要求。二是引领技术创新。科技向善的文化理念将在技术创新发展过程中发挥价值引领作用。三是促进全球合作。科技向善的文化理念试图在全球范围内建立人工智能伦理规范的“最大公约数”,各国在达成伦理共识的基础之上,能够建立互信,实现更加充分深入的国际合作。

  虞昊:个人认为,人工智能原则也应包含非对抗与非失控的理念。非对抗意味着不应将人工智能视作人类社会的对抗性存在,人工智能已经成为人类社会的构成性要素,我们必须持更为开放的态度去面对人工智能。非失控意味着不应放弃对人工智能的伦理规范,应以智能的方式去规范加速发展的人工智能。如果以上述理念为前提,也就是说,在支持人工智能发展的情况下,科技向善的文化理念在推动全球人工智能健康发展中就变得极为重要。此处的“善”在国家治理层面即指向“善治”,而当人工智能的发展从国家范围扩展到全球范围,“善治”就在构建人类命运共同体的意义上拥有了更贴近现实的内涵。各国应摒弃冷战思维与零和博弈,基于善意与友谊共同思考人类作为整体如何在人工智能的冲击下通往全球性的“善治”。

  邓玉龙:2019年欧盟发布《可信赖的人工智能伦理准则》,2021年中国国家新一代人工智能治理专业委员会发布《新一代人工智能伦理规范》(以下简称《规范》)。与欧盟发布的伦理准则相比,《规范》体现了中国特色社会主义的制度优势,旨在将伦理规范融入人工智能全生命周期。人工智能发展的根本目的是促进人的全面发展,因此,我以为,人工智能原则还应体现共享和有序发展的要求。共享,旨在防止人工智能的技术垄断。科技发展应该兼顾全体人民的利益,而不是服务于少数群体,由全体人民共享科技发展成果,推动全球科技水平的共同增长。有序发展,旨在防止人工智能技术的无序扩张。人工智能技术的发展最终是为了提升人的幸福感,推动科技有序发展能够促进人机和谐融合,有效预防潜在无序扩张的风险。

  主持人:从规范层面来说,伦理反思对规范人工智能发展的作用主要体现在哪些方面?

  彭家锋:近年来,世界各主要国家在人工智能领域竞争日趋激烈,纷纷将人工智能发展置于国家发展的战略层面。比如,美国陆续出台《国家人工智能研究和发展战略计划》(2016)和《关于维持美国在人工智能领域领导地位的行政命令》(2019);欧盟先后发布《欧洲人工智能战略》(2018)和《人工智能白皮书》(2020);中国也较早发布了《“互联网+”人工智能三年行动实施方案》(2016)和《新一代人工智能发展规划》(2017)。人工智能科技竞争的客观局面已然形成。在此背景下,如果忽视人工智能技术发展所带来的全球性风险与挑战,极有可能陷入技术赶超的竞争逻辑。因此,亟须规范人工智能的科技竞争,而倡导伦理反思或许就是一条可行之路。伦理反思的意义至少在于:一是设定伦理底线。人工智能技术的开发和应用需要遵循一些基本的价值理念和行为规范。只有守住伦理底线,才有可能避免颠覆性风险的发生。二是实现敏捷治理。伦理反思是一个动态、持续的过程,贯穿于人工智能科技活动的全生命周期。为了确保其始终服务于增进人类福祉和科技向善的初衷,需要保持应有的道德敏感性,以灵活、及时、有效的手段化解人工智能带来的各种伦理挑战,确保其在科技向善的道路上行稳致远,实现良性发展。

  邓玉龙:人工智能科技竞争是为了促进科学技术发展,而科学技术发展的最终目的是推动人类社会的进步。人工智能科技竞争不应该仅包括技术竞争的单一维度,更不应该通过技术优势遏制他国的科技发展,而应该是在人工智能科技条件下的综合性竞争,通过良性竞争促进全球人工智能和全人类的共同发展。其中就应该包括社会治理竞争,通过社会治理保障社会公平,因而对社会中人与人关系的伦理反思构成人工智能科技竞争的有机组成部分。首先,伦理反思对人工智能科技竞争提出了更高的要求。人工智能的公平性、可信任性、可解释与透明度、安全性不仅是伦理要求,也代表了人工智能技术的发展方向,是人工智能科技竞争需要抢占的技术制高点。科技的发展是为了人的全面发展,因而人的发展内嵌于科技发展要求,伦理反思有助于防止工具主义的泛滥。其次,伦理反思为人工智能科技竞争提供价值引导。伦理反思注重保障人的权利,科技发展并不是社会发展中的唯一衡量因素,我们还应该关注其中多样性的因素,尤其注重保护特殊群体的利益,例如防止数据鸿沟等不良影响。伦理反思有助于实现人工智能的综合性健康发展。

3.人工智能安全与人的全面发展

  主持人:科学探究一直以来都是人们认识世界和了解自身的重要认知方式,人工智能等信息产业的革命如何影响着人们的认知方式?

  彭家锋:人工智能等信息产业的革命,促进了科学研究新范式——数据科学的诞生,进而对人们的认知方式产生深刻影响。数据科学被认为是继实验、理论和模拟之后的新的科研范式。相较于传统科学,数据科学融合了统计和计算思维,通过人工智能等技术提供的海量数据、强大算法和算力,能够直接从数据中寻找相关关系、提取相关性或者预测性知识,进而产生一种基于相关性的科学思维模式。但这种相关性并不一定能够转化为因果关系,因为可解释性对于从数据科学技术确定的相关性中提取因果解释至关重要,而相关技术一般都缺乏必要的透明度和可解释性。数据科学更可能成为一种预测科学,但是预测并不是科学追求的唯一目标。通过揭示世界的潜在因果结构来解释和干预现象,也是科学的两个重要目标。因此,尽管数据科学能够通过分析大量数据生成相关性知识,却不能直接产生因果解释。对此,传统科学的可检验性假设方法和因果规律探求仍有其重要价值。数据科学并非取代传统科学,相反,两者将相互补充,共同成为人类探索世界的有效工具。

  虞昊:显而易见的是,随着人工智能向着通用人工智能迈进,其能够为人们提供的教育资源、生活娱乐、工作讯息也越来越丰富,人们势必越来越依赖于通过与人工智能进行交互来获取外界信息。因此,当人工智能深度地构成人们认知世界的滤镜时,若不对人工智能本身具有重复性、同质性倾向的认知框架保持警醒,人工智能可能扭曲人们的认知方式直至影响人的主体创造性。

  邓玉龙:以人工智能为代表的全新技术发展被称为第四次工业革命,其中最显著的特征就是机器与人类的深度融合,机器不再作为一种外在性的工具被人类使用,而是在与人类的深度关联中影响人类的认知方式。一方面,信息产业革命丰富了人类认知的联结方式。人工智能和大数据技术的发展促进人类的分析逻辑从因果关系扩展为相关关系,对相关关系的重视使人工智能可以从大数据而非小数据维度获取信息,为人类认知提供新的视角。按照传统人类认知方式的理解,因果关系要求关于世界的认知是确定性的,而这在数字时代的复杂性社会中很难实现。人工智能对相关关系的认知填补了这一缺失,允许我们在无法掌握确定信息但在掌握大量数据的条件下对未来趋势作出预测。另一方面,如果我们对人工智能等科技的输出结果和生成内容盲目信赖,将结果和内容与经验事实之间进行绝对等同的连接,误认为是事实的全部,那么我们就会丧失人文主义抽象反思的能力,对此我们应当保持警惕,始终坚持反思和批判的人文精神。

  主持人:如何调适人的主体创造性与信息高度集成共享之间的关系?

  彭家锋:当人们逐渐将更多创造性工作交由人工智能完成,不免让人担忧人工智能是否将会威胁到人的主体创造性。从人机关系的角度来看,这种担忧是基于一种人机敌对论的视角,认为人工智能挤压了人的主体创造性空间,是替代逻辑的延续。但从人机协作的视角出发,将人工智能看作人的得力帮手,通过创造性地使用人工智能可以赋予人类更大的创造性空间。比如,在进行文字写作、多媒体脚本、程序代码、文稿翻译等工作时,可先由人工智能高水平地完成草稿工作,然后再由人类进行一些创造性的调整和发挥。此时人工智能生成的内容将成为进一步创作的原材料,人类将以更高的效率投入创造性活动之中。当然,要实现以上效果并非易事,不仅需要思想观念的转变,还应在制度安排、教育方式等方面作出相应调整。

  虞昊:面对信息高度集成共享的人工智能,人有可能转变为算法的动物。试想下述场景:当依据人工智能展开行动变得足够便捷有效时,行动者便会倾向于采信人工智能,此时,看似是人类行动者基于自然语言在进行互动,实则是算法逻辑基于计算机语言在进行数字化运转。于是,人的主体创造性被侵蚀,人可能沦为算法动物。对此类情形,我们应该保持足够的清醒与警惕。

  邓玉龙:人工智能技术生成的内容(AIGC)具有高度集成共享的特性,能够高效地对人类知识进行数据挖掘、信息生成。调适人的主体创造性与信息高度集成共享之间的关系,我们需做到如下几个方面:首先,需要通过人的创造性扩大AIGC数据库,当下AIGC主要是依赖于大语言模型,以大量的网络文本作为训练数据库生成的,通过人的创造性生成可以不局限于网络文本,而是进一步扩展数据库的训练文本,从而提高其丰富度。其次,需要通过人的创造性为AIGC提供价值训练,通过人的创造性生成的价值立场、伦理法则等与AIGC的训练数据库相融合,从而建构可信赖、可持续的信息高度集成共享机制。最后,需要将人创造性生成的内容与AIGC共同作为人类知识的来源,人类知识的获得不能仅仅局限于AIGC,而是需要人发挥其主体创造性对人工智能技术生成的内容进行反思和拓展,将人类无法被数据化的、经验性的知识与AIGC数据化的知识融合成为人类知识的来源。

  (本版编辑张颖天整理)

什么是人工智能 (AI)人工智能的重要性何在

作为混合云数据管理领域的权威企业,NetApp深知数据访问、管理和控制的重要价值。NetApp®DataFabric提供一个统一的数据管理环境,覆盖各种边缘设备、数据中心和多种超大规模云。DataFabric使各种规模的企业都能加快关键应用程序的运行速度、增强数据可见性、简化数据保护并提高运营灵活性。

NetApp人工智能解决方案包含以下关键组件: 

ONTAP®软件在内部环境和混合云中支持AI和深度学习。AFF全闪存系统加快AI和深度学习工作负载的处理速度,消除性能瓶颈。ONTAPSelect软件使用物联网(IoT)设备和聚合点从边缘高效地收集数据。CloudVolumes快速为新项目设计原型,并支持在云间移动AI数据。

此外,NetApp已开始将大数据分析和人工智能融入自己的产品和服务之中。例如,ActiveIQ®使用数十亿个数据点、预测性分析和强大的机器学习,为复杂IT环境提供主动式客户支持建议。ActiveIQ是一款混合云应用程序,它所采用的NetApp产品和技术,与我们的客户为满足各种用例需求而构建人工智能解决方案所用的产品与技术相同。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇