博舍

还在被人脸识别准确率指标欺骗吗 人工智能识别率的准确度

还在被人脸识别准确率指标欺骗吗

 导读

随着硬件性能的提升和人脸数据量的增大,人脸识别也越来越成熟,商业应用也越来越多。经常看到很多文章说,人脸识别算法做了什么什么改进在LFW上的识别准确率达到99.6%以上。

[[346897]]

实际上,仅仅一个准确率指标是无法衡量一个模型的性能,准确率无法体现出人脸识别中最重要的指标通过率和拒绝率,通过率包含两种情况同一个人通过的概率和不同人通过的概率,拒绝率包含两种情况不同人被拒绝的概率和同一个人被拒绝的概率,通常我们希望模型在不同人通过率越低的情况下同一个人通过率越高越好,下面的评估指标主要也是基于这两个进行演化的。

人脸识别

现在人脸识别的应用多种多样,如人脸考勤、实名验证、身份验证、人脸支付以及天网系统等。实际上底层的实现技术主要还是依靠人脸验证和人脸搜索,人脸验证也称为1:1人脸匹配,人脸搜索也称为1:N人脸匹配。

首先我们从包含人脸的图片中通过人脸检测提取出人脸的位置信息以及人脸关键点,然后通过仿射变换结合人脸关键点进行人脸对齐,获取到对齐后的人脸图片。再将人脸图片通过人脸识别模型进行人脸特征提取,提取出来的特征是一个高维向量,这个向量的维度通常是128、256、512、1024甚至更高。

判断两张人脸图片是否相似的度量主要有两个指标欧式距离和余弦相似度。先通过人脸识别模型将人脸图片转换为特征向量。欧式距离顾名思义就是计算两个向量的欧式距离,所以两个向量的欧式距离越小表示他们越相似。余弦相似度就是计算两个向量的夹角的余弦值,cosθ的取值范围在[−1,1],我们可以对其进行归一化操作到[0,1]通过0.5+0.5∗cosθ来实现,余弦相似度越大表示是同一个人的概率越大。

无论是1:1人脸匹配还是1:N人脸匹配,我们都需要先确定一个阈值(欧式距离或相似度),通常人脸相似的度量指标都是用的相似度,我们后面所说的阈值其实也就是一个相似度阈值。通过人脸数据集根据指定通过率或拒绝率来确定阈值,大于这个阈值表示为同一个人否则不是同一个人。

人脸验证

1:1人脸验证(verification),比对两张图片是否为同一个人,常见的应用有火车站人脸闸机实名验证、手机人脸解锁等。通过判断比对图片的相似度是否大于阈值,常用的性能评估指标有如下几个

FAR

FAR(FalseAcceptRate)认假率,表示错误的接受比例,与FPR(FalsePositiveRate)假正例率等价,指不是同一个人却被错误的认为是同一个人占所有不是同一个人比较的次数,计算公式如下

 

 

关于详细的混淆矩阵(TP、TN、FP、FN)说明,请参考我的另一篇文章分类算法中常用的评估指标

TAR

TAR(TrueAcceptRate)表示正确的接受比例,与TPR(TruePositiveRate)真正率等价,指是同一个人且被正确的认为是同一个人占所有同一个人比较的次数,计算公式如下

 

 

FRR

FRR(FalseRejectRate)错误拒绝率,与FNR(FalseNegativeRate)假负率,指是同一个人但被认为不是同一个人占所有是同一个人比较的次数,计算公式如下

 

 

在一些1:1的人脸识别比赛中,也会有一些其它的评估指标,FMR(falsematchrate)和FNMR(falsenon-matchrate)。FMR指错误匹配率等价于FAR,FNMR指错误的不匹配率等价于FRR。

有时候还会看见类似于FNMR@FMR=0.000001,这种表达式所指示的是先在数据集上计算出FMR=0.000001时的阈值,然后再根据这个阈值计算FNMR。类似于这种TAR=0.998@FAR=1e-6,表示的是当不是同一个人通过率为1e-6时,相同人的通过率为99.8%。对于1:1人脸验证来说当FAR越低的情况下,TAR越高越好

人脸搜索

1:N人脸识别评估分为两种情况开集识别(open-setidentification)和闭集识别(close-setidentification)。

在评估1:N的人脸识别时我们需要三组图像,galleryG(底库,已注册的人脸库),probe(探针,待识别的人脸图像),probe分为Pn和Pg​,Pn​中的人脸照片不在gallery中,被称为imposter,Pg​中的人脸照片在gallery中,被称为genius。

开集识别

开集识别(open-setidentification):开集识别需要解决的问题是判断一个probePj​在不在gallery中,如果在这个人是谁。Pj​可以在gallery中,也可以不在。

假设galleryG={g1​,g2​.....gn​},gi​表示gallery中的一个人,待测人脸Pj​与每个gi​计算一个相似度,用Sji​表示,Sji​表示两张人脸图片是同一个人的概率。我们将G中的每一个人与Pj​计算相似度,得到一个集合S{sj1​,sj2​.....sjn​},对集合S进行由大到小的排序(用的欧式距离就是从小到大排序)。假定与Pj​在gallery中对应人的是g∗,定义rank(Pj​)=n表示Pj​与g∗的相似度排在第n位,rank1也称为topmatch。

对于刷脸支付就是一个TOP1的open-setidentification,人脸身份验证就是一个topk的open-setidentification。

闭集识别

闭集识别(close-setidentification):闭集识别需要解决的问题是,在gallery中找到probePj​,Pj​属于gallery中。与开集识别一样,闭集识别关心的也是在topk中是否包含正确的识别结果。

评估指标

下面的评估指标在开集识别和闭集识别中都适用

DIR

DIR(DetectionandIdentificationRate):指Pj​∈Pg​与G中的真实的结果s∗之间的相似度大于τ且大于其他所有与Pj​不是同一个人的相似度在Pg​中所占的比例,DIR衡量的是库内人员的通过性能。计算公式如下

 

 

下面我们来举例说明一下

假设G中有A、B、C三个人的人脸信息每个人有一张照片,Pj是属于C的另一张人脸照片,如果Pj与A、B、C的相似度分别为0.5、0.6、0.9,τ为0.7,那么此时才算是匹配正确。如果Pj与C的相似度为0.68τ,所以匹配成功虽然b与B的相似度SbB​>τ,但SbB​c与C的相似度最高,但ScC​

人工智能应用:影响人脸识别的因素

 

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。尽管已有30多年的研发历史目前,但人脸识别产品仍然受光照、视角、遮挡、年龄等多方面因素的影响。

 

1.光照问题

光照变化是影响人脸识别性能的最关键因素,对该问题的解决程度关系着人脸识别实用化进程的成败。由于人脸的3D结构,光照投射出的阴影,会加强或减弱原有的人脸特征。尤其是在夜晚,由于光线不足造成的面部阴影会导致识别率的急剧下降,使得系统难以满足实用要求。

同时,理论和实验还证明同一个体因光照不同引起的差异,大于同一光照下不同个体之间的差异。光照问题是机器视觉中的老问题,在人脸识别中的表现尤为明显。解决光照问题的方案有三维图像人脸识别和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。

 

2.姿态问题

人脸识别主要依据人的面部表象特征来进行,如何识别由姿态引起的面部变化就成了该技术的难点之一。姿态问题涉及头部在三维垂直坐标系中绕三个轴的旋转造成的面部变化,其中垂直于图像平面的两个方向的深度旋转会造成面部信息的部分缺失。使得姿态问题成为人脸识别的一个技术难题。

针对姿态的研究相对比较的少,目前多数的人脸识别算法主要针对正面、准正面人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。

3.表情问题

面部幅度较大的哭、笑、愤怒等表情变化同样影像着面部识别的准确率。现有的技术对这些方面处理得还不错,论是张嘴还是做一些夸张的表情,计算机都可以通过三维建模和姿态表情校正的方法把它纠正出来。

 

4.遮挡问题

对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题。特别是在监控环境下,往往被监控对象都会带着眼镜、帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸检测算法的失效。

5.年龄变化

随着年龄的变化,一个人从少年变成青年,变成老年,他的容貌可能会发生比较大的变化,从而导致识别率的下降。对于不同的年龄段,人脸识别算法的识别率也不同。这个问题最直接的例子就是身份证照片的识别,在我国身份证的有效期一般都是20年,这20年间每个人的容貌必然会发生相当大的变化,所有在识别上也同样存在很大的问题。

6.人脸相似性

不同个体之间的区别不大,所有的人脸的结构都相似,甚至人脸器官的结构外形都很相似。这样的特点对于利用人脸进行定位是有利的,但是对于利用人脸区分人类个体是不利的。

 

以模仿某个明星为目标的化妆、整容等人为因素加大了这个问题的难度。尤其是双胞胎的问题,人脸识别系统究竟能不能正确的识别出来,这个其实在学术界也是有争论的。有专家认为双胞胎根本不应该靠人脸识别技术进行分辨,它是没法用人脸识别技术来准确进行区分的。

7.动态识别

非配合性人脸识别的情况下,运动导致面部图像模糊或摄像头对焦不正确都会严重影响面部识别的成功率。在地铁、高速公路卡口、车站卡口、超市反扒、边检等安保和监控识别的使用中,这种困难明显突出。

8.人脸防伪

伪造人脸图像进行识别的主流欺骗手段是建立一个三维模型,或者是一些表情的嫁接。随着人脸防伪技术的完善、3D面部识别技术、摄像头等智能计算视觉技术的引入,伪造面部图像进行识别的成功率会大大降低。

9.样本缺乏

基于统计学习的人脸识别算法是目前人脸识别领域中的主流算法,但是统计学习方法需要大量的训练。由于人脸图像在高维空间中的分布是一个不规则的流形分布,能得到的样本只是对人脸图像空间中的一个极小部分的采样,如何解决小样本下的统计学习问题有待进一步的研究。此外,现在参与训练的人脸图像库基本都是外国人的图像,有关中国人、亚洲人的人脸图像库少之又少,给训练人脸识别模型增加了难度。

10.图像质量问题

人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不一样,特别是对于那些低分辨率、噪声大、质量差的人脸图像(如手机摄像头拍摄的人脸图片、远程监控拍摄的图片等)如何进行有效地人脸识别是个需要关注的问题。同样的,对于高分辨图像对人脸识别算法的影响也需要进一步的研究。现在,我们在人脸识别时,一般采用的都是相同尺寸,清晰度很接近的人脸图片,所以图像质量问题基本可以解决,但是面对现实中更加复杂的问题,还需要继续优化处理。

 

人脸识别技术已广泛应用于金融、司法、安保、边检、航天、电力、教育、医疗等领域。尽管存在很多弊端,但随着智能计算视觉等相关技术的进一步完善和社会认同度的提高,人脸识别技术将应用到更多的领域。未来,它与其他生物识别技术的有效结合必将大大提高身份识别的准确度。

文章载自:

    [1] 影响人脸识别的因素[DB/OL]. https://zhuanlan.zhihu.com/p/51291033,2018-12-01

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇