阿里ai人工智能平台
Artificialintelligence(AI)iswidelyusedintoday’sbusinesssuchasfordataanalytics,naturallanguageprocessing,orprocessautomation.Theinclusionofartificialintelligencebitsandpiecesintodigitalbusinessmodelscreatesvaluebyimprovingback-officeefficiencyandincreasingcustomerexperience.Theemergenceofartificialintelligenceisbasedondecadesofresearchforsolvingdifficultcomputersciencetasksandisnowrapidlytransformingbusinessmodelinnovation.Companiesthatarenotconsideringartificialintelligencewillbevulnerabletothosecompaniesthatareequippedwithartificialintelligencetechnology.WhilecompanieslikeGoogle,Amazon,andTeslahavealreadyinnovatedtheirbusinessmodelswithartificialintelligence,mediumandsmallcapshavelimitedbudgetsforputtingmucheffortintosettingupsuchcapabilities.Onehigh-efforttaskincreatingartificialintelligenceservicesisthepre-processingofdataandthetrainingofmachinelearningmodels.Tomeetthespeedofthemarketitmostoftenisnotenoughtosetupinternalcapabilitiestoperformthepre-processing.Googleforexamplemakesuseofaverypragmaticsolution—thetaskofdatalabelingandvalidationfortheirmachinelearningmodelsareoutsourcedtoallthosewhoareGoogleusers.HaveyoueverthoughtabouttheaimofGoogleCaptcha?Sure,itisusedtopretendbotsfromintrudingapplicationsbutbesidesthis,daily,millionsofusersarepartoftheGoogleanalyticspre-processingteamwhicharevalidatingmachinelearningalgorithms—forfree.IfyouarenotoneoftheGooglesoutthereyoumightbeinterestedinhowyoucanmeettherisingartificialintelligenceneeds.
人工智能(AI)在当今的业务中被广泛使用,例如用于数据分析,自然语言处理或流程自动化。将人工智能点点滴滴纳入数字业务模型可通过提高后台效率和增加客户体验来创造价值。人工智能的兴起基于数十年来为解决困难的计算机科学任务而进行的研究,并且正在Swift改变商业模式的创新。不考虑人工智能的公司将容易受到那些配备了人工智能技术的公司的攻击。虽然像Google,Amazon和Tesla这样的公司已经通过人工智能创新了他们的商业模式,但是中小型企业的预算有限,他们在建立此类功能上投入了大量精力。创建人工智能服务的一项艰巨任务是数据的预处理和机器学习模型的训练。为了满足市场的速度,大多数情况下不足以设置内部功能来执行预处理。以Google为例,它使用了非常实用的解决方案-将其机器学习模型的数据标记和验证任务外包给所有Google用户。您是否考虑过Google验证码的目标?当然,它可以用来防止机器人入侵应用程序,但除此之外,每天有数百万用户是GoogleAnalytics(分析)预处理团队的成员,这些团队正在免费验证机器学习算法。如果您不是那里的Google之一,您可能会对如何满足不断增长的人工智能需求感兴趣。
机器学习的数据标签(DataLabelingforMachineLearning)Machinelearninginvolvesusingalgorithmstolearnhowtosolveaspecifictaskbyrelyingonpatternsfromsampledatawhetheritisfromtrainingorpractice.Asthereareseveralapproachesonhowtoperformmachinelearning,supervisedlearningapproachesheavilyrelyonlabeleddatatocreatemachinelearningmodels.Thefollowingexampleshighlightusecaseswiththeneedforlabelinghugeamountsofdata:
机器学习涉及使用算法来学习如何通过依靠样本数据中的模式(无论是来自培训还是来自实践)来解决特定任务。由于存在几种执行机器学习的方法,因此监督学习方法在很大程度上依赖于标记数据来创建机器学习模型。以下示例突出显示了需要标记大量数据的用例:
Autonomousdrivingwiththeneedforidentifyingpedestrians,vehicles,andtrafficlights自动驾驶需要识别行人,车辆和交通信号灯Servicedesksrequestswiththeneedforurgencyclassificationbeforeinvolvinghumans服务台要求在涉及人员之前进行紧急分类Qualityinspectionofproductionproductsforwastedetermination对生产产品进行质量检查以确定废物Personalassistancesystemsforunderstandingconversationcontexts个人帮助系统,用于理解对话环境Datascientistsspendabout80%oftheireffortsonpre-processingdataandlabelingdatafortrainingscenarios.Only20%oftheeffortisputintobuildingmachinelearningmodels.thisisthereasonwhycrowdsourcingplatformsthattakecareoftherepetitivetasksforlabelingdataarose.Initiallylabelingdatain-houserequireshiringemployeesandgivestheadvantagetohaveatransparentlabelingprocessbyknowingthepeoplewhoperformthelabeling.Ratherthandoingin-houselabeling,crowdsourcingplatformsallowcompaniestodistributethousandsoftasksandeasilymaximizethereturnoninvestmentbyhavingoperationalexpenditurebasedontheneededdemand.
数据科学家将大约80%的精力用于预处理数据和为训练场景添加标签数据。只有20%的精力用于构建机器学习模型。这就是兴起了负责重复数据标注任务的众包平台的原因。最初在内部给数据加标签需要雇用员工,并且通过了解执行标签的人员而具有透明的标签过程的优势。众包平台无需内部标记,而是使公司可以分发数千个任务,并通过根据所需需求分配运营