机器人视觉三维成像技术全解析
来源:卢荣胜,史艳琼,胡海兵.机器人视觉三维成像技术综述[J]
链接:
http://www.opticsjournal.net/Articles/Abstract/lop/57/4/040001.cshtml
原题:机器人视觉三维成像技术综述
摘要
本文针对智能制造领域机器人视觉感知中的三维视觉成像技术进行综述,系统地总结了一些有代表性的机器人视觉成像方法的特点和实际应用中的局限性,内容涉及飞行时间三维成像、点线扫描三维成像、色散共焦成像、结构光投影三维成像、光学偏折成像、单目与多目立体视觉三维成像和光场成像等。绘制了各种视觉成像的图谱,并探讨了机器人手眼系统最佳三维成像方法。
在工业4.0时代,国家智能制造高速发展,传统的编程来执行某一动作的机器人已经难以满足现今的自动化需求。在很多应用场景下,需要为工业机器人安装一双眼睛,即机器人视觉成像感知系统,使机器人具备识别、分析、处理等更高级的功能,可以正确对目标场景的状态进行判断与分析,做到灵活地自行解决发生的问题。
一、机器视觉系统组成
典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分。基于PC的视觉系统具体由如图1所示的几部分组成:
图1 机器视觉系统组成
①工业相机与工业镜头——这部分属于成像器件,通常的视觉系统都是由一套或者多套这样的成像系统组成,如果有多路相机,可能由图像卡切换来获取图像数据,也可能由同步控制同时获取多相机通道的数据。根据应用的需要相机可能是输出标准的单色视频(RS-170/CCIR)、复合信号(Y/C)、RGB信号,也可能是非标准的逐行扫描信号、线扫描信号、高分辨率信号等。
②光源——作为辅助成像器件,对成像质量的好坏往往能起到至关重要的作用,各种形状的LED灯、高频荧光灯、光纤卤素灯等都容易得到。
③传感器——通常以光纤开关、接近开关等的形式出现,用以判断被测对象的位置和状态,告知图像传感器进行正确的采集。
④图像采集卡——通常以插入卡的形式安装在PC中,图像采集卡的主要工作是把相机输出的图像输送给电脑主机。它将来自相机的模拟或数字信号转换成一定格式的图像数据流,同时它可以控制相机的一些参数,比如触发信号,曝光/积分时间,快门速度等。图像采集卡通常有不同的硬件结构以针对不同类型的相机,同时也有不同的总线形式,比如PCI、PCI64、CompactPCI,PC104,ISA等。
⑤PC平台——电脑是一个PC式视觉系统的核心,在这里完成图像数据的处理和绝大部分的控制逻辑,对于检测类型的应用,通常都需要较高频率的CPU,这样可以减少处理的时间。同时,为了减少工业现场电磁、振动、灰尘、温度等的干扰,必须选择工业级的电脑。
⑥视觉处理软件——机器视觉软件用来完成输入的图像数据的处理,然后通过一定的运算得出结果,这个输出的结果可能是PASS/FAIL信号、坐标位置、字符串等。常见的机器视觉软件以C/C++图像库,ActiveX控件,图形式编程环境等形式出现,可以是专用功能的(比如仅仅用于LCD检测,BGA检测,模版对准等),也可以是通用目的的(包括定位、测量、条码/字符识别、斑点检测等)。
⑦控制单元(包含I/O、运动控制、电平转化单元等)——一旦视觉软件完成图像分析(除非仅用于监控),紧接着需要和外部单元进行通信以完成对生产过程的控制。简单的控制可以直接利用部分图像采集卡自带的I/O,相对复杂的逻辑/运动控制则必须依靠附加可编程逻辑控制单元/运动控制卡来实现必要的动作。
二、机器人视觉成像的结构形式
机器人视觉系统的主要功能是模拟人眼视觉成像与人脑智能判断和决策功能,采用图像传感技术获取目标对象的信息,通过对图像信息提取、处理并理解,最终用于机器人系统对目标实施测量、检测、识别与定位等任务,或用于机械人自身的伺服控制。在工业应用领域,最具有代表性的机器人视觉系统就是机器人手眼系统。根据成像单元安装方式不同,机器人手眼系统分为两大类:固定成像眼看手系统(Eye-to-Hand)与随动成像眼在手系统(Eye-in-Hand,orHand-eye),如下图2所示。
图2 两种机器人手眼系统的结构形式
a)眼在手机器人系统,(b)眼看手机器人系统
有些应用场合,为了更好地发挥机器人手眼系统的性能,充分利用固定成像眼看手系统全局视场和随动成像眼在手系统局部视场高分辨率和高精度的性能,可采用两者混合协同模式,如用固定成像眼看手系统负责机器人的定位,使用随动成像眼在手系统负责机器人的定向;或者利用固定成像眼看手系统估计机器人相对目标的方位,利用随动成像眼在手系统负责目标姿态的高精度估计等,如图3所示。
图3 机器人协同视觉系统原理图
三、机器人视觉三维成像方法
3D视觉成像可分为光学和非光学成像方法。目前应用最多的还是光学方法,其包括:飞行时间法、激光扫描法、激光投影成像、立体视觉成像等。
飞行时间3D成像飞行时间(TOF)相机每个像素利用光飞行的时间差来获取物体的深度。目前已经有飞行时间面阵相机商业化产品,如MesaImagingAGSR-4000,PMDTechnologiesCamCube3.0,微软KinectV2等。
TOF成像可用于大视野、远距离、低精度、低成本的3D图像采集,其特点是:检测速度快、视野范围较大、工作距离远、价格便宜,但精度低,易受环境光的干扰。例如Camcueb3.0具有可靠的深度精度(