博舍

万物赋能:边缘计算与人工智能交融使能 边缘计算对人工智能的影响不包括以下哪项

万物赋能:边缘计算与人工智能交融使能

日前,天津大学智能与计算学部 王晓飞 教授应《人民论坛·学术前沿》邀请,发表《智慧边缘计算:万物互联到万物赋能的桥梁》万字长文,边缘计算社区经过和王晓飞教授沟通讨论,为了方便大家阅读,将论文整理成几篇。字字珠玑,愿大家有收获。

第一篇《5G及后5G时代:万物互联到万物智能的黄金时代》,点击下图链接即可阅读。

本文为第二篇《万物赋能:边缘计算与人工智能交融使能》。

边缘智能:无所不在的智能协同

边缘智能依托于边缘计算的低时延、分布式的特性,实现了将人工智能的自主学习、智能决策能力进行下放。

图1-边缘智能示意图

如图1所示,边缘智能基于边缘计算的运行机制和网络结构,为智能应用提供多层次的资源支持和性能优化,而边缘智能对智能应用的优化和保障主要体现在以下三个方面。

第一,优化智能应用请求的响应时延与资源供给。

目前传统的网络架构采用了基于云计算的执行模式,通过将人工智能服务部署在云端,依托于云端服务器集群丰富的硬件资源来处理计算请求。这虽然解决了硬件资源不足的问题,但云端服务器地理位置偏远的特性造成了额外的时延,导致基于云计算的架构无法满足实时服务的需求。可通过引入边缘计算技术来支撑人工智能服务,在网络边缘分布式部署大量的边缘节点,从而向资源受限的终端设备提供支持来实现边缘智能。

图2实时视频分析解决方案

边缘智能已经在许多应用领域有了优异的表现,如图2所展示的边缘智能在实时视频分析中的应用,实时视频分析在智能工厂、智慧社区、无人驾驶等场景中都是不可或缺的关键环节,借助边缘智能实时视频分析可以更加智能、更加高效。在实时视频分析服务的应用过程中,智能手机、智能摄像头等资源受限的终端设备在捕获视频数据之后,若无法支撑人工智能服务高额的资源消耗,智能终端可以仅执行数据压缩、图像分割等预处理,然后将数据传输至边缘节点处理。

数量众多的边缘节点一旦接收到来自终端设备的服务请求后便立即开始处理,并且在边缘端还可以进行多个边缘节点之间的智能协作以提供更好的服务。当边缘端无法满足应用的资源需求时,可以将数据传输至云端处理,但也会不可避免地造成额外的传输时延,这也是未来需要解决的问题之一。

此外,云端除了提供强大的资源支持之外,还能为边缘端提供人工智能模型的聚合更新能力,从而帮助边缘节点对全局知识进行学习和训练。

综上所述,基于边缘智能可以将视频分析服务部署在更接近请求源的边缘节点上,相对于云端的远距离连接,边缘节点低传输时延的特性可以实现视频分析请求的实时处理,促进应用服务的敏捷响应,而对于边缘智能中的计算密集型任务请求,则可以通过将其传输至云端来满足高额的资源需求。

第二,改进智能应用数据的通讯传输与隐私保护。

由于在边缘计算平台中通常需要大量设备的协同运行,因此不同设备之间不可避免的存在大量数据传输,这不仅会给通讯网络造成极大的流量负载,还会使得数据缺乏隐私性保护。因此联邦学习被进一步提出,它使得人工智能模型在边缘计算架构中可以进行分布式训练,并且无需上传样本数据,只需将训练后的参数更新上传,之后再由边缘节点聚合参数更新并进行参数下发。

联邦学习在边缘计算的应用赋予了人工智能模型分布式训练的能力,使得智能设备可以在本地对数据进行处理并仅对参数的更新信息进行传输,避免了集中式训练时需要将大量原始数据传输汇总的方式,从而进一步保障了人工智能模型的训练过程,在实现了减轻流量压力的同时,强化了数据的隐私保护。

第三,提升智能应用服务的应用拓展与部署保障。

在人工智能服务的应用实践方面,目前国内外已经有多种边缘智能平台发布并投入使用,这进一步拓展了人工智能服务应用的广泛性,而多样化与有价值的人工智能服务能够拓宽边缘计算的商业价值,为边缘智能的实现提供了基础和保障。

华为公司在2018年设计并推出了边缘智能平台IEF,可以将云端服务器的处理能力延伸至边缘侧,从而就近提供实时的智能服务。此外,IEF还通过兼容kubernetes以及docker实现了轻量化的特性,并且依托于边云协同的特性在监控平台、智能工业等领域有着良好的前景规划。

2019年,百度公司宣布开源了其边缘智能计算平台BAETYL,能够提供身份制定以及规则策略制定、云端管理下发、边缘端部署运行等功能,并且平台采用了模块化思想,实现了用户按需使用的模式。此外,BAETYL还可以与百度边缘智能管理套件(Baidu-IntelliEdge)协同使用,进一步推进边缘智能的发展。

AWSGreengrass是由亚马逊公司在2017年发布的边缘智能平台,它使得设备可以在本地对数据进行处理以及数据筛选,从而只对必要信息进行传输,极大地提高了信息传输效率。此外,AWSGreengrass还具有优异的鲁棒性(Robustness),可以在设备间歇性网络连接的情况下使用,能够适应更加复杂的网络环境。

2018年,微软公司将其边缘智能平台AzureIoTEdge作为开源项目开放提供,这一平台采用了容器的方式运行,容器中不仅支持微软提供的相关服务,也支持用户提供的代码并且提供了对容器的监控管理功能。

智能边缘:无所不能的数字演进

智能边缘的目的即是将人工智能算法融入边缘以支持动态的、自适应的资源分配与管理。

图3 智能边缘示意图

如图3所示,智能边缘通过使用人工智能的学习和决策能力来实现对边缘计算平台中的资源、设备、请求的智能化管理,来优化提升边缘计算平台的运行效率,而智能边缘对于边缘计算的优化主要包括以下三个方面。

第一,实现边缘计算平台的动态管理与高效运行。网络中往往包含大量异构设备以及种类繁多的应用请求,因此,如何针对不同的应用请求特性,实现异构设备的自适应协作处理就成为了一个棘手的问题。目前有许多处理这类问题的传统算法,如贪心算法、蚁群算法等。然而,这些传统算法却存在许多弊端:一是对网络环境变化以及异构硬件参数的适应性差;二是缺少对长期收益的考虑;三是优化指标相对单一。

因此,传统算法已经无法适应边缘计算平台的性能发展需求,要实现性能瓶颈的突破就必须探索和应用具有高效性、实时性、动态性的决策算法,而人工智能技术出色的决策能力可以帮助边缘计算平台实现智能化管理。

边缘计算平台往往采用端—边—云的多层组织架构,所以如何在不同组织层面中的异构设备之间进行高效的计算卸载调度成为必须考虑的问题,而人工智能技术可以通过计算卸载决策实现将不同层面的异构设备牢牢结合在一起。智能决策模型一般通过与网络环境的不断交互进行反复迭代来不断提升决策的准确性,但网络环境的复杂性和动态性会导致规模庞大的状态空间。

第二,决策边缘计算任务的计算卸载与协同处理。如图4所示,智能边缘可以依据计算任务不同的特征和属性来自适应地选择执行模式。对于计算需求较小的任务可以直接在终端设备执行,从而避免数据传输所导致的时延以及资源消耗。然而,对于资源需求较大的计算任务,可以通过人工智能模型对边缘计算平台中进行智能化管理,从而充分整合利用平台中异构设备的资源实现任务的协同高效执行。

图4 智能边缘中任务执行模式

对于任务卸载可以划分为整体卸载与部分卸载两种模式。整体卸载会将传输至单一边缘节点或云端执行,这可以避免对任务进行分割整合所造成的资源消耗,但当计算任务规模较大时,将任务传输至单一设备执行会导致执行效率低下,可以选择对任务进行分割再交由不同的设备执行处理,通多不同设备的协同处理实现异构设备资源的利用整合。

此外,根据边缘计算平台中的协作方式还可以进一步分为纵向协作与水平协作。纵向协作将会联合端—边—云三层的异构设备来协同处理计算任务,由于不同层级的设备资源存在差异会导致人工智能服务性能的差异,通过多层级的协作可以实现对计算任务的各个环节按需供应。水平协作则通常将任务交由若干个边缘节点处理,通过在单一层级中对计算任务进行协同处理,可以在充分利用设备资源的同时,减少通讯传输造成资源消耗。

第三,降低边缘计算数据的冗余传输与低效存储。无论是现在还是未来,数据传输的压力只增不减,但不是所有的数据都是有用的,所以为了减少应用服务中的冗余数据传输、实现应用服务的敏捷响应,边缘缓存的设计也加入了边缘智能化的大集体。边缘缓存方案可以通过在边缘节点缓存热点内容,实现在出现相关请求时能够快速响应。因此,基于边缘缓存技术可以对同一地区中的相似请求进行快速响应,从而避免了对请求的数据进行多次冗余传输的情况。

然而,边缘缓存却面临着一个严峻挑战,由于边缘节点的存储空间具有局限性而且其服务范围内的热点内容难以预测,因此,无法实现缓存的高效命中。这时,人工智能依然发挥着重要作用,它可以依据每个边缘节点的服务内容进行定制化的策略设计,并可以追踪热点内容的实时变化来对策略进行智能化调整,从而确保缓存内容的有效性和准确性。因而,借助人工智能技术自主化的决策设计边缘缓存方案,可以避免相似请求的冗余数据传输以及促进存储空间的高效利用,实现缓存命中率的大幅提升。

总结与思考

世界每时每刻都在产生数据,就像每天的温度、湿度,甚至于一棵不起眼的草的颜色深度……这些诞生于物理世界的数据,本身只是一堆冰冷的数字,在我们使用相关的工具、(如温度计、传感器等)对其测量之前,这些数据对我们人类而言没有任何的价值。

世界上产生的数据每年都在以指数规模增长,最好的处理方法就是将70%的数据都在网络边缘进行处理,通过分散的方法减轻计算压力;另外,这些由设备产生的数据中有太多对我们无用的数据了,据思科统计,到2021年结束,全球每年产生的数据将会达到847ZB,而在这样海量的数据中仅有约10%的数据才是有用的。

这些数据在还没有与人类世界产生联系时,它本身还不能算作是信息。但通过打破数据算力壁垒,将物理世界中冰冷无意义的数字、冗余海量的数据抽取出来,映射到数字空间,形成可演算的、对生活进行调整与反馈的知识,信息就由此诞生。算力边界的突破需要借助一系列的智能算法如特征工程和知识整合的支撑。数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。这些原本复杂冗余的数据被精简为一条条的知识进而映射到数字空间,知识的相互作用关联,形成真正有价值有意义的信息,开始与人类世界产生联系(见图5)。

图5从万物互联到万物智能

当有人类行为参与到信息鉴别与利用时,这些信息才终算突破了智力边界,在人类与信息的交互过程中,通过智力来选择这些对我们有利的信息,让有用的信息及时反馈到我们的行动中去,避免进行不利的活动。

例如,从事同样的农耕活动,古时的完全靠人力耕作,后来依托工具以及使用耕牛,再到如今的机械化智能化的农业。虽然都是同等的工作,但这中间缺隔着巨大的智力鸿沟,这就是智力边界。所以,认知层边缘计算所面临的主要任务是如何更好地将人的智能与边缘算法相结合,从而提升边缘侧的算法效率、算法适配性,优化信息组合的结构,使这些信息更高效、快速地为人类所用,同时将作用的结果反馈给人类,辅助人类进行决策,形成人类认知层的边缘计算。

当智力边缘被突破,数据与信息随着人类的认知被更好的利用,激增的有益信息随着人类的社交网络被不断传播,如个人向朋友分享自己喜爱的事物可以增进朋友间的友谊等,当个人的分享需求越来越多,这种聚集的需求突破了应用边界,就形成了我们所熟知的社交网络应用。应用边界的突破一定程度上依赖于人的社交关系,主要存在两个相关的现象:社会信任(socialtrust)与社会互惠(socialreciprocity)。

社会信任是指人与人之间的信任关系,普遍存在于亲人、朋友、同学之中。社会互惠是指在人类社会中存在的多个个人或团体通过相互合作从而达成目标最大化,各方都有收益的现象,普遍存在于同事、公司之间。一般来说存在这两类社会关系的人群更容易在用户与用户之间形成直接的内容分享,人类的这种行为就在社交边缘边界上搭建了一座沟通的桥梁,使得这些个人社交的边缘计算需求聚集形成了一种边缘计算应用从而达到智能边缘。

最终在实现这样的边缘智能应用场景之后,可以继续对这些边缘计算应用的场景进行优化与结构调整,通过模型共享、迁移学习等,用从一个环境中学到的知识帮助完成新环境中的学习任务,做到举一反三。在模型分享过程中我们将不断地调整原来应用的架构,进行持续的更新与发展,最终突破架构边界的限制。那时,我们将能够最大限度地去探索这一类人的社会行为背后的最大价值与意义,这些本质的价值与意义一方面作用于互联网服务提供商,他们可以在此基础上调整他们的边缘计算的服务核心,另一方面这些本质的价值也反馈于用户自身,实现自身的价值,展现最终价值层边缘计算的核心要义。

从算力世界中数据的海洋,到集合着成千累万信息的数字空间,再到人类智力对信息处理的参与,最终到达智慧边缘计算,用智能的、高效的方式最大限度地处理信息并反馈给人类,这条路似乎还有着无尽的绵延。但无论技术怎样发展,这些数据都会从人类和世界中来,最终也必然被运用于人类对世界的认识和改造中。

从万物互联到万物赋能,科技的发展带来了人与世界、人与人、人与自身关系的改变,还带来了对科技发展进行哲学思考的要求。在未来,既然智慧边缘计算将人类从琐碎的脑力消耗中解脱出来了,那么人类就需要用思维完成更重要的任务:既需要研究在科学发展的历程中人类如何认识科学,还要反思处于发展潮流中的人们是如何存在和认识自己的,从而推进人类—社会—科技—自身的和谐关系,这也为未来科学技术哲学的发展提供了方向和动力。

(本文系2018年度科技部重点研发计划“社区风险监测与防范关键技术研究”和2019年度科技部重点研发计划“基于边缘智能协同的物联终端系统与应用”的阶段性成果,项目编号分别为:2018YFC0809803、2019YFB2101901;天津大学智能与计算学部博士生王晨阳对本文亦有贡献)

作者简介

王晓飞,天津大学智能与计算学部教授,博导,国家青年千人,北洋青年学者,IEEE通信学会“年度最佳杂志论文奖"(FredW.EllersickPrize),IEEE杰出服务奖获得者。研究方向为智能未来网络、5G移动网络、移动边缘计算、网络大数据等。主持或参与国家自然科学基金、科技部重点研发计划等共二十多个韩国、加拿大和中国政府科研以及华为、电信的等企业项目,在国际知名学术期刊和会议中发表论文100余篇,其中SCI论文50余篇,含IEEE/ACMTrans.、中科院1区、CCF-A类等高水平论文近30篇,SCI/WoS引用超1000次,谷歌引用近4000次。担任IEEEJSAC,ACCESS,IoTJ等一二区刊物的编委。

本文首发于《人民论坛·学术前沿》,责编/肖晗题

感谢阅读,欢迎扩散传播!感谢!

边缘计算社区:促进边缘计算领域知识传播,中立,客观,如果您关注边缘计算、5G、物联网、云原生等领域请关注我们。

什么是边缘人工智能 如何实现边缘人工智能

EdgeAI是边缘人工智能的缩写,它是物联网系统的下一个发展前沿,那么,什么是边缘人工智能?如何实现边缘人工智能?下面跟着小编一起去阅读本文吧!

什么是边缘人工智能简单来说,边缘人工智能是指以直接在边缘设备上运行的机器学习算法的形式使用人工智能。机器学习是一个广泛的领域,近年来取得了巨大的进步。它所基于的原则是,计算机可以通过从数据中学习来自主提高自己在给定任务上的性能,有时甚至超出了人类的能力。

如今,机器学习可以执行许多高级任务,包括但不限于:

●计算机视觉:图像分类、目标检测、语义分割。

●语音识别、自然语言处理、聊天机器人、翻译。

●天气和股票市场预测、推荐系统。

●异常检测、预测性维护。

那么机器学习已经存在这么久了,是什么让边缘人工智能突然变得如此特别?为了更好地解释这一点,让我们先看看边缘人工智能中的边缘到底是什么意思。

边缘计算与云计算从本质上讲,边缘计算和云计算都是为了做同样的事情,也就是处理数据、运行算法等等。然而,边缘计算和云计算的根本区别在于计算实际发生的地方。

在边缘计算中,信息处理发生在现场和主动部署或边缘的分布式物联网设备上。边缘设备的一些示例,比如智能手机,以及各种微控制器。然而,在云计算中,同样的信息处理发生在集中位置,比如数据中心。

传统上,云计算主导了物联网领域。由于它由自然具有更大计算能力的数据中心提供支持,边缘的物联网设备可以简单地传输本地数据,并保持其低功耗和可承受性的关键特征。虽然云计算仍然是物联网非常重要和强大的工具,但边缘计算最近受到越来越多的关注,这是因为两个重要原因导致。

●边缘设备上的硬件变得更强大,同时保持成本竞争力。

●软件正日益为边缘设备优化。

这一趋势正在取得巨大的进展,现在可以在边缘计算设备上运行机器学习,而长期以来,由于高计算要求,机器学习长期以来一直被保留用于云计算!于是,边缘人工智能诞生了。

边缘人工智能:将云带到边缘以发展物联网有了边缘人工智能,物联网设备变得越来越智能。通过机器学习,尖端设备现在能够做出决定,可以进行预测、处理复杂的数据,并管理解决方案。

例如,边缘物联网设备可以处理操作条件,预测机器是否会故障,这使得公司能够执行预测性维护,避免在完全故障的情况下产生更大的损失和成本。

另一方面,配备边缘人工智能的安全摄像头不再只捕捉视频,将能够识别人类和计算人流量。或者,通过面部识别,甚至可以准确地识别出谁通过了某个区域以及何时通过。

随着机器学习的发展,许多令人兴奋的可能性现在也将扩展到边缘设备。但这种模式转变的关键是显而易见的,为什么云计算能力比以往任何时候都更加被边缘化,这都是有原因的。

边缘人工智能的好处1、减少延迟在边缘处理信息最直接的好处是,不再需要在云端之间传输数据。因此,可以大大减少数据处理中的延迟。

在之前的预防性维护例子中,支持边缘人工智能的设备将能够立即响应,例如关闭受损的机器。如果我们使用云计算来执行机器学习算法,我们将在数据与云的传输过程中损失至少一秒钟的时间。虽然这听起来可能不重要,但当涉及到操作关键设备时,每一个可以实现的安全边际都是值得追求的!

2、降低带宽需求和成本在边缘物联网设备之间传输的数据越少,网络带宽的要求也会降低,因此成本也会降低。

以图像分类任务为例。由于依赖云计算,必须将整个图像发送到在线处理。但如果用边缘计算代替,就不再需要发送该数据了。相反,我们可以简单地发送处理后的结果,它通常比原始图像小几个数量级。如果我们将这种效应乘以网络中物联网设备的数量,可能多达数千个或更多。

3、提高数据安全性减少到外部位置的数据传输也意味着更少的开放连接和更少的网络攻击机会。这使得边缘设备安全运行,避免了潜在的拦截或数据泄露。此外,由于数据不再存储在集中式云中,因此单个违规的后果会大大减轻。

4、提高可靠性由于边缘人工智能和边缘计算的分布式特性,操作风险也可以分布在整个网络中。从本质上讲,即使集中式云计算机或集群出现故障,各个边缘设备也能够维持其功能,因为计算过程现在独立于云端!这对于关键的物联网应用尤其重要,例如医疗保健。

为什么边缘AI很重要虽然边缘人工智能的实际好处显而易见,但其内在影响可能更难以捉摸。

边缘人工智能改变我们的生活方式边缘人工智能代表了将人工智能真正融入日常生活的第一波浪潮。虽然人工智能和机器学习研究已经存在了几十年,但我们现在才刚刚开始看到它们在消费产品中的实际应用。例如,自动驾驶汽车就是边缘人工智能进步的产物。边缘人工智能正在以多种方式缓慢但坚定地改变我们与环境的互动方式。

边缘人工智使人工智能价格亲民人工智能的使用和发展不再是研究机构和大企业的专属。由于边缘人工智能被设计为在相对负担得起的边缘设备上运行,因此任何人都比以往任何时候都更容易了解人工智能的工作原理,并开发出适合自己使用的人工智能。

更重要的是,边缘人工智能使世界各地的教育工作者能够以有形的方式将人工智能和机器学习带入课堂学习。例如,通过为学生提供使用边缘设备的实践经验。

边缘人工智能挑战我们的思维方式人们常说,人工智能和机器学习的潜力只受到人类创造力和想象力的限制,可随着机器学习变得越来越先进,许多曾经只有人类才能完成的任务将变得自动化,我们对生产力和目的的内在概念将受到严重挑战。

虽然不能确定未来会发生什么,但我对边缘人工智能带来的东西普遍持乐观态度,因为我相信它会推动我们找到更有创造性和更有成就感的工作。比如嵌入AI的边缘设备能够实时监控PPE,包括工作环境中安全帽合规性,并向任何违反PPE行为的人员发出安全和维护信号。计算机视觉与机器学习相结合,可以实现PPE合规性监控过程的自动化。

再比如人工智能集成摄像头可以缓解城市中经常阻碍交通的瓶颈和阻塞点。交通拥堵的发生主要是由于忽略了某些因素,如两辆行驶车辆之间的距离、交通灯、路牌、十字路口的行人等。智能交通系统是计算机视觉的主要应用领域,包括车辆分类、交通违章检测、交通流分析、停车场检测、车牌识别、行人检测、交通标志检测、防撞、路况监测等,以及车内驾驶员注意力检测。

通过本文,我相信大家已经懂了什么是边缘人工智能,以及它对物联网乃至人类的未来意味着什么。希望综上所述能给予各位一定的帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇